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Abstract This article proposes a multi-prize noisy-ranking contest model. Contes-
tants are ranked in descending order based on their perceived performance, which is
subject to random perturbation, and they are rewarded based on their ranks. Under
plausible conditions, we establish that our noisy performance ranking model is sto-
chastically equivalent to the family of multi-prize lottery contests built upon ratio-form
contest success functions. We further establish the equivalence of our model to a con-
test model that ranks contestants by their best performance out of multiple independent
attempts. These results therefore shed light on the micro-foundations of the popularly
adopted lottery contest models. The “best-shot ranking rule” reveals a common thread
that connects a broad class of seemingly disparate competitive activities (such as
rent-seeking contests, patent races, research tournaments), and unifies them through
a common performance evaluation mechanism.

1 Introduction

A wide class of competitive activities can be viewed as contests, in which all partici-
pants forfeit scarce resources to compete for a limited number of prizes. The prevalence
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of this phenomenon has spawned an enormous amount of economic literature, and a
wealth of theoretical contest/tournament models. These models exhibit a variety of
technical characteristics and have been applied in a wide range of contexts, includ-
ing college admissions, influence politics, sports, war and conflict, and internal labor
market competition. !

Central to formally modeling contests is a mechanism that picks the winners and
distributes the prizes. In “imperfectly discriminatory contests” , the amount of effort
exerted directly affects whether or not one wins, but measurement errors, subjective
biases, and randomness in the production processes can also influence the outcome.
The selection mechanism in this type of contest is conventionally represented by a
contest success function, which maps contestants’ effort entries into the likelihood of
every contestant winning each prize.

Most of the existing literature focuses on winner-take-all contests. Perhaps the
most-widely adopted approach is the lottery contest model, which assumes a ratio-
form contest success function. The Tullock contest model is its most popular special
case. In a winner-take-all lottery contest, the likelihood that a contestant i wins, P;,
is given by the ratio of the output of his/her effort to the total output supplied by the
entire cohort, i.e., P; = g;(x;)/ Z’}: 1 & (x;), where the output production function
gi(x;) is usually an increasing function of effort x; 2

This framework provides an intuitive and tractable specification for the winning
probability as a function of effort in winner-take-all imperfect discriminatory con-
tests. However, a ratio-form contest success function does not directly apply to the
widely observed multi-prize contests, where contestants vie for more than one prize.
To fill this gap, Clark and Riis (1996b, 1998a) introduce a clever “generalization”
of the basic Tullock contest model that allows a block of prizes to be distributed.
By adopting ratio-form success functions as its building block, this “multiple-winner
nested-contest model ” hypothetically conducts a series of conditionally independent
(single-winner) “lotteries.” Each lottery “draws” one prize recipient until all the prizes
are given away.*

Thus far, the nested-contest model offers the most reasonable and convenient
alternative for determining multiple prize recipients in imperfectly discriminatory
contests.>® Nevertheless, the nature of this (seemingly sequential) process deserves

1 See Konrad (2009) for a thorough survey of economic studies on contests.

2 Recent applications of ratio-form contest success functions can be seen in Wérneryd (2000), Yildirim
(2005), Morgan and Viardy (2007) and Hann et al. (2008), among many others.

3 Examples include (a) firms setting aside a number of bonus packages to reward their top-performing
workers; (b) employees competing to fill multiple vacancies that are higher in the organizational hierarchy;
and (c) the awarding of gold, silver, and bronze medals to runners-up in sports competitions.

4 As a result, the conditional probability that a remaining contestant will be selected in the next “draw” is
independent of the effort exerted by contestants selected in previous “draws.”

5 Besides the studies conducted by Clark and Riis (1996b, 1998a), lottery contest models have been applied
in multiple-winner settings by Amegashie (2000), Yates and Heckelman (2001), Szymanski and Valletti
(2005) and Fu and Lu (2009a,b).

6 Another approach to modeling multiple-winner contests is the multiple-prize all-pay auction model. A

handful of studies have contributed to this research agenda, including Barut and Kovenock (1998), Clark
and Riis (1998b), Moldovanu and Sela (2001), Moldovanu et al. (2007), Siegel (2009).
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further exploration, and its intrinsic connection to the winner-take-all lottery contest
model has yet to be investigated. The economic activities underlying each single “lot-
tery”, as well as the entire (seemingly sequential) selection process, remain in a “black
box.” In this article, we set out to address these issues.

Konrad (2009) points out in his thorough survey of economic studies on contests that
a contest can be naturally regarded as a competitive event where contestants expend
costly efforts to “get ahead of their rivals.” Based on this notion, a contest requires
contestants to be (at least partially) ordered based on a ranking system. We then raise
the following question: Is there a ranking system that underpins the winner selection
mechanism modeled by these lottery contests?

We show that a unique ranking system does exist. We propose a multi-prize contest
model that selects prize recipients through a noisy ranking of contestants. A fixed num-
ber of economic agents (contestants) produce their outputs from their inputs (effort).
Following Lazear and Rosen (1981), one’s observed output is the sum of a determin-
istic component (a strictly increasing function of effort) and a noise term that could
arise from numerous sources, e.g., perturbation in production and performance mea-
surement error. These contestants are ranked by their observed output in descending
order’: the higher the observed output, the better a contestant’s rank. As a result, given
a set of effort entries, and any (simultaneous) realization of noise terms, a complete
ranking arises. Each agent is awarded a prize of his/her rank.®

Our framework borrows its technical form directly from the consumers’ discrete
choice econometric model (also known as McFadden’s general extreme value model).
Formal statistical analysis (which is laid out in Sect. 2.3) reveals the economic nature
of our model in a contest setting. When the noise term follows a Type-I extreme value
(maximum) distribution, the noisy-ranking contest is underpinned by a “favorable
performance (FP) ranking” rule. In other words, the ranking rule essentially honors
the most FP of each contestant, i.e., “the best shot” of each contestant, across multiple
independent attempts. The performance of each attempt could follow any distribution.
This allows us to interpret our framework as a “best-shot” contest.

We establish that our “best-shot” contest, underpinned by FP ranking, uniquely
generates winning probabilities that are identical to those of a multiple-winner nested
contest model (Clark and Riis 1996b, 1998a). For any given effort entries and pro-
duction functions, the ex ante likelihood of every possible prize distribution outcome
perfectly coincides with that in the multiple-winner nested contest model.’ The hypo-
thetical sequential-lottery procedure of this nested contest model virtually reflects a

7 An analogous scenario is the standard moral hazard setting, where an employer cannot observe or verify
the effort supplied by contestants (employees). Hence, he ranks the perceived performance of contestants
to determine their compensation and other rewards.

8 According to Clark and Riis (1998a) and Fu and Lu (2009b), this prize allocation rule maximizes the
amount of individual effort in a multi-prize lottery contest (multiple-winner nested contest). As this article
will establish the stochastic equivalence between our noisy-ranking model and a multi-prize lottery contest,
with this prize allocation rule also maximizing the expected output in our framework. This type of rank-
ordered prize distribution rule has also been discussed in studies by Glazer and Hassin (1988), Barut and
Kovenock (1998), Moldovanu and Sela (2001), etc.

9 The ex ante likelihood that a contestant is ordered on the I-th rank is equivalent to the probability that a
contestant is selected for the /-th draw in a multiple-winner nested contest.
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statistical property of its underlying (simultaneous) FP ranking system. As a winner-
take-all lottery is a special case of the nested contest model (where only the first draw is
of interest), the winner-take-all lottery contest is thus integrated with the multiple-prize
nested contest model through the (unique) FP ranking.

Our results provide statistical micro-foundations for lottery contest models. The FP
ranking underlying our ranking model illuminates the competitive activities encapsu-
lated in ratio-form success functions. We show that an evaluation rule that honors
contestants’ “best shots” can be explicitly witnessed in many real-life competitive
events and conforms to a natural regularity. The FP ranking uncovered in our analysis
further allows lottery contest models to be connected to other modeling approaches
and to unify a wide variety of observationally detached competitive activities. We
demonstrate the roles played by FP ranking rule in these diverse contexts. The anal-
ysis also implies a limit on the scope of this relationship. We offer one example of
a “weakest link” contest, where a “best-shot” evaluation mechanism (FP ranking) is
missing, to further illuminate the nature of lottery contests.

A handful of articles have probed the micro-foundations of winner-take-all contest
success functions. Skaperdas (1996) shows that the ratio-form contest function is the
only alternative that satisfies a number of axiomatic properties. This axiomatic foun-
dation, as pointed out by Skaperdas (1996) and Clark and Riis (1996a, 1997), alludes
to the hidden connection between the contest models, the probabilistic choice mod-
els (Luce and Suppes 1965), and the discrete choice econometric models (McFadden
1973, 1974).19 In particular, Clark and Riis (1996a) explicitly point out the equiva-
lence of a random choice model and lottery contests in the winner-take-all case.'!-12
Our article complements this literature in two aspects. First, this is the first attempt
in the literature to provide micro-foundations from a noisy-ranking perspective for
the generalized lottery contest models that allow for multiple prizes. Our analysis
uncovers that the nested multiple-winner contest model (Clark and Riis 1996b) is
naturally integrated with the standard lottery contest framework. Second, our study
reveals a plausible economic interpretation (‘“best-shot” contests) for the popularly
assumed ratio-form success functions, which allows us to link together a variety of
models from diverse contexts. Hence, this article is also related to the literature that
bridges different contest modeling approaches. For instance, Baye and Hoppe (2003)
reveal that Research Tournament Models (Fullerton and McAfee 1999), Patent Race
Models (Dasgupta and Stiglitz 1980) and winner-take-all Tullock Contest Models
are strategically equivalent. Our article explores the (unique) statistical and economic
foundation that underpins the equivalence among these diverse frameworks. In addi-
tion, our analysis focuses on a more general environment which allows for multiple
prizes.

10 Assuming unmeasurable psychological factors, this literature investigates randomized choices of deci-
sion makers (consumers) that result from a stochastic ranking. Among others, McFadden (1973, 1974) has
demonstrated the econometric implementation of modeling revealed choice among discrete alternatives
while adopting a probabilistic choice model.

1 This stochastic property is rediscovered by Jia (2008) in the setting of single-prize contests.

12 Clark and Riis (1996a) interpret the noise in the evaluation process as bias in observation, while we
interpret it as perturbation in production process.
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The remainder of the paper is organized as follows. In Sect. 2, the model is set up,
the analysis is completed, and the implications of this model are briefly discussed.
Section 3 reinforces the argument by presenting the “dual” problem to our benchmark
model and an “antithesis.” Section 4 provides some concluding remarks.

2 A multi-prize noisy-ranking contest model

2.1 Setup
I > 2 contestants, indexed by i € I £ {1,2,..., I}, simultaneously commit to their
effort x = (x1,...xy), to compete for L € {1,2,..., [} prizes. A contestant’s effort

allows him to produce a perceivable output (y;), which is subject to random pertur-
bation. Contestants are evaluated through these noisy signals of their performance
(vis). It should be pointed out that a tournament model with noisy performance of
contestants can be traced back to the original work of Lazear and Rosen (1981).

Based on the discrete choice framework of McFadden (1973, 1974), we assume
that the noisy signal (y;) is described by

logy; =loggi(x;) +¢&, Viel, (1)

where the deterministic and strictly increasing function g;(-) : Ry — R4 measures
the output of contestant i’s effort x;,13 and the additive noise term &; € (—00, +00)
reflects the randomness in the production process or the imperfection of the measure-
ment and evaluation process. g;(-) is named as the production function of contestant
i. Define g £ {g;(-),i € I}, which denotes the set of production technologies. The
idiosyncratic noises ¢ = {g;(-),i € I} are independently and identically distributed
with zero means.

The L prizes are ordered by their values, with Vi > V, > ... > V. Each con-
testant is eligible for one prize at the most. These contestants are ranked based on
their perceivable performance (i.e., log y;) in descending order. Prizes are allocated
among contestants based on their ranks, given the availability of the prizes. That is,
the contestant who contributes the highest output y; receives Vi, the contestant who
contributes the second highest output then receives V5, and so on, until all the prizes
are given away.

When L = 1, the model degenerates into a winner-take-all contest, with the top-
ranked contestant being the only winner. When L > 2, a multi-prize contest follows,
which requires a more complete ranking among contestants to implement its prize
distribution rule. For any given effort entries x, a complete ranking among contestants
immediately results from any realization of the noise terms €. We assume that ties are
broken randomly and fairly. The probability of a contestant i winning a prize V; is
simply given by the probability that he/she is ranked at the /-th position. This setup
therefore embraces the notion that a contest is a competitive event where contestants
compete to “get ahead of others” (Konrad 2009).

13 Define loggi(x;) = —o0if gj (x;) = 0.
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While this model imposes virtually no restrictions on the technology g;(-) and
the number of prizes L, it follows McFadden (1973, 1974) in assuming the random
component &; to be drawn from a type I extreme-value (maximum) distribution. The
cumulative distribution function of ¢; is

F(e)=e ", & €(~00,+00),Viel, )
and the density function is
fle) =e 57", & € (~00,+00),Vi € L. (3)

The mean and variance of ¢; are given by y (= 0.5772) and énz, respectively, where
y is the Euler—Mascheroni constant.

The performance evaluation mechanism underlying this formulation will be dis-
cussed in Sect. 2.3, which reveals the economic implications of this seemingly peculiar
distribution. Further, it should be noted that our model can be set up in alternative but
technically equivalent ways. For instance, the additive-noise ranking model (1) is
equivalent to a multiplicative-noise ranking model;

vi = gi(xp)&, Viel, 4

where the noise term &; is defined as & £ exp ¢;. However, the current setup, i.e.,
model (1), allows for the most handy subsequent analysis, which is to be executed in
Sect. 2.2. When ¢; follows a type I extreme-value (maximum) distribution, &; £ exp &;
must follow a Weibull (maximum) distribution. As will be revealed in Sects. 2.3 and
3, the two types of models have the same economic implications.

In the subsequent analysis, we first show that this noisy-ranking model is stochas-
tically equivalent to the family of lottery contests (winner-take-all lottery contests and
multiple-winner nested contests). We then analytically explore the economic nature
of this model.

2.2 The equivalence to lottery contests

Given effort entry X, contestant i is ranked ahead of contestant j, if and only if

log gi(x;) +¢& > logg;(x;) +¢;
8i(xi)
gj(xj)

& ej <& +log

Contestant i will be ranked the highest if and only if

8i(x;)
gj(xj)’

gj <& +log Vi e I\{i}.
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McFadden (1973, 1974) characterizes the probability distribution of the top-ranked
choice. The result can be adapted to our contest setting.

Lemma 1 (McFadden 1973, 1974) For any given x > 0 such that 3 ;1 8(x;) > 0,
the ex ante likelihood that a contestant i achieves the top rank is

Pl = 5 8i (xi) Vi e L. (5)

jer&i(x))’

The proof is omitted as it is available from McFadden (1973, 1974). By Lemma 1,
the probability that a contestant will be ranked the highest can be expressed as the
ratio of his/her deterministic output g; (x;) to the sum > je1 &) (xj). This winning
probability coincides with the popularly assumed ratio-form contest success function
in winner-take-all lottery contests.

When L > 2 and I > 3, the model is a multi-prize contest.!* To fully describe
a multi-prize contest, the probability of each contestant winning each prize has to be
completely characterized. For this purpose, we now characterize the probabilities of
all possible complete rankings for a given set of effort entries x.

Let the sequence {i k}1€=1 denote a complete ranking of the / contestants, where i
is the index of the k-th ranked contestant. We obtain the following result:

Lemma 2 For any given effort entries x > 0 such that g; (x;) > 0,Vi € 1, the ex ante
likelihood of any complete ranking outcome {ik}l£=1 can be expressed as

8ir (xik)

v 1
pUinhy) = M =5
Zld:k 8iy (xik/)

(6)

Proof See Appendix A.1. O

Lemma 2 states that the ex ante likelihood of a complete ranking can be expressed
as the cumulative product of all the terms of the series {g;, (x;,)/ Z,i,: k 8ip (X )} l€=1"

The term g;, (x;,)/ Z,@zk i, (Xiy,), as shown in the Appendix A.1, gives the probabil-
ity of a contestant iy being ranked in the k-th place, conditional on his/her rank falling
below k — 1.15

The L prizes are awarded to the L contestants who contribute the highest y; s, corre-
spondingly, based on their ranks. Hence, a prize distribution outcome is represented by
the subsequence {i k},f:1 of {i k}1£=1 , where i} denotes the index of the contestant who
is ranked at the k-th position and receives V. The probability of a prize distribution
outcome {ik}éz | is given as follows in light of Lemma 2.

14 A multi-prize contest is sensible only if / > 3. When I = 2 and L = 2, a two-prize contest with (Vy, V»)
is strategically equivalent to a single-prize contest with Vi — V5 if there is no income effect in contestants’
utility functions.

15 This property was first non-constructively proposed by Luce and Suppes (1965) as a hypothetical deci-
sion rule. It was first used in the econometrics literature by Beggs et al. (1981). To our knowledge, it has
not been applied in the multi-prize contest literature.

@ Springer



504 Q. Fu,J. Lu

Theorem 1 For any given effort entries X > 0 such that g; (x;) > 0,Vi € 1, the ex
ante likelihood of any prize distribution outcome {ik}llgz 1» L = 1 can be expressed as

8ir (xik)

pixkie)) = M) =4
Zk/:k gik/ (-xik/)

(N

To complete the model, we need to discuss the remaining cases that Theorem 1
does not cover, where some g;(x;) = 0 so that the outputs y; are zero for some con-
testants. Since prizes are first allocated to the contestants with higher outputs and ties
are randomly and fairly broken in our noisy-ranking model, these contestants will be
ranked among the bottom-most in a random manner.

We now elaborate upon the connection between our noisy-ranking contest model
and the multiple-winner nested contest Clark and Riis (1996b, 1998a). Clark and Riis
(1996b, 1998a) extend winner-take-all Tullock contests to allow for a block of prizes
to be allocated among contestants. Contestants simultaneously submit their one-shot
effort entries x. The recipient of each prize is selected through a “lottery” among all
the remaining eligible candidates, with each “lottery” being represented by a ratio-
form contest success function. A single prize recipient is drawn in each lottery draw.
As each contestant is eligible for one prize at the most, the recipient of a prize is
immediately removed from the pool of candidates who are eligible for the next draw.
This procedure is repeated until all the prizes are given away. Let €2,,, denote the index
set of all the remaining contestants for the m-th draw for the m-th prize V,,. Then

L)
Dicoy Ji(xi)
ZieQm fi(xi) > 0. Here, f;(-) : Ry — R; is the output function of contestant i in
the contest, and is assumed to be strictly increasing with effort outlay x;. To the extent
that Ziegm fi(xi) =0, 1.e., fi(x;) = 0,Vi € Q,,, prizes are randomly given away.
Thus, the prize distribution outcome of this nested contest is determined by a series of
M independent lotteries if M prizes are available. For a given set of effort outlays x,
the likelihood of any prize distribution outcome is simply the same as (7). A stochastic
equivalence is therefore established between the nested model and our ranking model
in the sense that they generate the same probability for any prize allocation outcome.

The nested model is implemented (literally) through a sequential lottery process.
In our noisy-ranking model, the ranks of all contestants are nevertheless determined
simultaneously. Our analysis thus sheds light on the microeconomic underpinning of
this (seemingly sequential) multi-prize lottery contest model from the perspective of
(simultaneous) noisy performance ranking.

An intriguing question naturally arises: does another distribution of the noise term
&; exist which can deliver the probability distribution given by (7)? The answer is in
the affirmative when I = 2. Hirshlefer and Riley (1992) provide one such example
in winner-take-all contests, which are described in Sect. 3.2. However, the answer is
negative for [ > 2.

Let CI, g(-), V) denote a multiple-winner nested Tullock contest with contestants
I, output functions g(-) and prizes V: each contestant i is endowed with an output pro-
duction technology g; (x;); while the vector V = (V1, ..., V1) represents the ordered
set of L prizes with V| > V, > ... > V. We obtain the following:

the probability that any contestant j € €2, wins a prize V,, is equal to
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Theorem 2 When I > 3 and L > 1, the benchmark noisy-ranking model (1) is
equivalent to the generalized multiple-winner nested contest model C(1, g(-), V) if
and only if €; follows a type I extreme-value (maximum) distribution with c.d.f. of
F(e)) = e ™" with &; € (—o0, +00) and b € R.

Proof See Appendix A.2. O

Theorem 2 establishes the unique stochastic equivalence of the noisy-ranking
contest model with the family of lottery contest models (winner-take-all and multi-
prize).'® Theorem 2 “uncovers” the stochastic nature of this lottery contest framework.
The sequential lottery process conveniently reflects a statistical property of a hidden
(simultaneous) noisy-ranking rule, while the probabilistic prize distribution rule (7)
does not rely on a sequentially implemented selection mechanism.

The nested contest is reduced to a standard winner-take-all lottery contest when
only one prize is available.!” From the perspective of noisy rankings, it is clear that
the “multiple-winner nested contest model” and winner-take-all lottery contest are
integrated into a unified framework through a unique underlying ranking system.

2.3 Favorable performance ranking and “Best-Shot” contests

We now demonstrate that a lottery contest model can be approximated by a “Best-
Shot” Contest model, or Favorable Performance (FP) Ranking Model, in which each
contestant is ranked against others based on his/her most favorable performance among
multiple independent attempts. The results in this subsection will unveil the micro-
foundations and economic implications of our benchmark noisy-ranking model and
lottery contest models.

We start with the noisy-ranking model (2), which is a direct variant of our bench-
mark model (1). In this model, contestants are ranked in descending order by the
realization of y;s. As mentioned earlier, the noise term &; is defined as &; £ expe;. It

is straightforward to verify that y; follows a Weibull (maximum) distribution with the
_ &)
cumulative distribution function Pr(y; < y) =e 7

1
Consider a uniform increasing transformation of variables y;: §; = Fy ! (e Vi ) ,

i =1,2,...,1, where Fo(-) : Ry — [0, 1] is an arbitrary continuous and strictly
increasing function. The random variable ¢;,i = 1,2, ..., I, is also independently
distributed. Because ¢; is a monotonic transformation of y;, ranking these contestants
by y;s is equivalent to ranking them by ¢;s. The cumulative distribution function of ¢;
is given by

16 Clark and Riis (1998a), as well as Fu and Lu (2009a), have provided a complete solution for the
multiple-winner nested contests when contestants are symmetric. This solution, by Theorem 2, also solves
for equilibrium of the noisy-ranking model (1) when contestants’ productions are identical.

17 This special case of single-prize contests is well studied by Skaperdas (1996) and Clark and Riis (1996a,
1997) among others.
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_1
Pr(t < ¢) = Pr(Fy! (e ) < 1)
= Pr(y; < —1/log Fo(¢))
_ o T eR® — &G log Fold)

= [Fo({)18109, (8)

Equation 8 reveals the nature of ¢;. Let Fy(-) be the distribution function of random
variables v;, Vi. The random variable ¢; is identical to the highest-order statistic of v;
s out of g; (x;) independent draws.

When contestants are ranked in descending order by ¢;s, the following contest
results. Each contestant i competes against the others by increasing the value of his/her
output. Each contestant uses an x; amount of effort to have g; (x;) independent attempts.
The function g; (x;) is an increasing function of x;. Each attempt allows the contestant
to produce an output with a random value v;, whose distribution follows c.d.f. Fy(-).
The contest takes the contestant i’s best shot, i.e., the highest realized value of v;s,
as his/her entry in the contest. Contestants are ranked by ¢;s in descending order. The
entry of contestant i, ¢;, is simply distributed according to the c.d.f. Pr(§; < ¢) =
[Fo(2)]8 (1) One should note that the interpretation of g; (x;) as the number of draws
requires that g; (x;) maps from R to the set of natural numbers. However, one may also
slightly abuse this interpretation by allowing g; (x;) to be a nonnegative real number.'8

This contest only honors the best performance of each contestant, and ranks all con-
testants by their own “best shots.” This fact allows us to name it a FP Ranking Model
or a “Best-Shot” Contest. We call the c.d.f. Fy(-), the distribution of the underlying
performance (of each single attempt). We obtain the following equivalence result:

Theorem 3 The benchmark noisy-ranking model (1) is stochastically equivalent to
the Favorable Performance Ranking Model with an arbitrary underlying performance
distribution Fy(-).

The (unique) statistical equivalence indicates that our benchmark model (1) and
the popularly-adopted lottery contest models are underpinned by a “favorable perfor-
mance ranking” (FP Ranking) model. Lottery contest models can be viewed to abstract
competitive events that honor each contestant’s best shot only.

“Best-shot” contests are not uncommon in reality. They can be created by a man-
made rule. For instance, weightlifters are ranked in the Olympic Games by their most
successful tries. More plausibly, this winning rule captures a natural regularity that
is common in many real-world competitive events: on many occasions, only the best
performance of a contestant can be observed. To provide an analogy of this argument,
an architect would submit only his/her most successful design to a design competition.

18 The integer problem of output g;(x;) can also be interpreted from another angle. Suppose that the
outputs g; (x;) are practically distinguishable up to the degree of 10~N where N(> 1) is an integer. Our
noisy-ranking model (2) is equivalent to [y; - 10V ] = g; (x;)& = [g; (x;) - 10V 1&;, Vi € LFor our ranking
model, ranking y; is equivalent to ranking y; - 10N . Since gi(x;) = gi(xp) - 10V are integers, they can
be interpreted as numbers of draws. Thus, the winning probability in a winner-take-all contest would be

P /167 N 1167 :
Pl = 2jer &) — Zjelgj(xj)’Vl el.
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A lawyer will offer only the most favorable evidence in court, while the strongest case
prevails. '

The research tournament model studied by Baye and Hoppe (2003) provides the
most intuitive example of FP Ranking Models or “Best-Shot” Contests.?’ Each firm
i hires n; scientists (where n; is an integer) to conduct R&D activities. Each scien-
tist can come up with an idea, with the value of each idea following a continuous
distribution with the common c.d.f. Fy(-). The firm picks the most valuable idea
developed by its scientists as its bid to compete with other firms. The value of the
best idea of a firm i is denoted by ¢;. It follows a continuous distribution with the
cdf. Gi(¢) = Pr(§ < ¢) = [Fo(¢)]". As shown by Baye and Hoppe (2003), as
well as being implied by our previous analysis, a firm i ’s probability of winning the
competition are n; / Z;=1 n j, which replicates the success function in a winner-take-
all Tullock contest. Our analysis reveals the statistical and economic foundations that
underpin this equivalence: this research tournament is exactly a contest that imple-
ments a FP ranking rule. It is this ranking rule that unifies these seemingly disparate
contest/tournament models.

3 Discussion: “Dual” problem and antithesis

The equivalence between our ranking model and lottery contest models sheds light on
the hidden mechanism in the black box of lottery contests. In this section, we further
illustrate the economic implications of our noisy-ranking model. Our discussion pro-
ceeds dialectically. We first demonstrate the role of FP Ranking and the “Best-Shot”
evaluation mechanism in the setting of a generalized race model (Dasgupta and Stiglitz
1980). We then show that this framework is stochastically “dual” to our benchmark
contest model. Further, we elaborate on our argument by presenting its “antithesis”
: a “weakest-link” contest (Hirshlefer and Riley 1992) is provided which cannot be
abstracted as a lottery contest, as the FP Ranking is missing.

3.1 The “Dual” problem: a generalized race model

A race model is an abstraction of a competitive event where participants receive greater
rewards when they accomplish a specific task sooner than others. One notable example
is an R&D race where firms compete by developing an innovative technology, and the
first innovator is rewarded by a patent. Dasgupta and Stiglitz (1980) first propose a
winner-take-all patent race model to study drastic innovation competition. Baye and
Hoppe (2003) show the equivalence between this framework and single-prize Tullock
contest. In what follows, we demonstrate that this equivalence can be extended to more

19 This court judging rule is extracted from Baye et al. (2005).

20 Fullerton and McAfee (1999) proposed a very similar version of this research tournament model. They
allowed the value of a firm’s innovation x; to follow the distribution F%i (x;), where the real number z; is
the amount of research conducted by the firm. By contrast, Baye and Hoppe (2003) explicitly assume the
power term as an integer, and interpret it as the number of scientist. We follow Baye and Hoppe’s (2003)
approach as it is a more precise depiction of a “Best-Shot Contest.”
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general settings, which allow for multiple prizes. The equivalence is again underpinned
by FP ranking rule.

We borrow the framework of Dasgupta and Stiglitz (1980) and Baye and Hoppe
(2003). Our analysis, nevertheless, considers a more complete ranking among con-
testants, and therefore allows for multiple prizes. A multi-prize race model becomes
appealing when analyzing the ramifications of a patent policy that rewards duplica-
tors.>! One may also imagine that a number of firms pursue a process R&D project.
All the successful innovators may benefit from superior productivity. However, the
earlier a firm succeeds in developing a cost-reducing technical solution, the higher is
its profit.

Each of I contestants chooses a level of effort x; to accomplish a task (e.g., an
innovation). Contestant i accomplishes a task by time #; with a probability (i.e., a
Weibull minimum distribution) of

W(tlx) =1 —e 50 x; 1 >0, )

where z;(x;) is the hazard rate of contestant 7, i.e., the conditional probability of
accomplishing this task between #; and t; + At;. Conditional on effort entry x , #;s are
independently distributed. The hazard rate z;(x;) is a strictly increasing function of
the expenditure x;. Define z(-) £ (zi(\).

I prizes (denoted by V = (V, Vo, ..., Vj)) are to be awarded to contestants.?2
Given effort entry x = (x;), each conditional realization of (#;) determines the ranks
of the contestants and the prize distribution outcome. Denote this multi-prize race
model by R(I, z(-), V) and amultiple-winner nested Tullock contest with contestants I,
technology z(-) and prizes V by C(1, z(-), V).

Theorem 4 A generalized race model R(1, z(-), V) is stochastically equivalent to a
descending-order noisy-ranking contest (1) with the set of output functions z(-) and
i.i.d. noises ¢ that follow an extreme value type I (maximum) distribution. Hence, it is
also equivalent to a generalized lottery contest model C (1, z(-), V).

Theorem 4 states the stochastic equivalence of our multi-prize race model and a
lottery contest model, as well as our benchmark ranking model. A dedicated technical
proof is omitted for brevity.”> However, the hidden ties that connect all these models
surface as the discussion proceeds.

A race is essentially a noisy-ranking contest: contestants are ranked in ascending
order based on the amounts of time they spend on the given task, and a contestant

21 The winner-take-all rule in the patent system has been challenged by critics, and a high-profile policy
debate has taken place in the U.S. and Europe over whether duplicators should be allowed to share the
market with initial innovators (See Denicolo and Franzoni 2010).

22 Prizes are allowed to carry zero value.

23 The proof is available upon request.
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receives a higher reward for using less time #;. Recall that #; is distributed by the
Weibull (minimum) c.d.f. Pr(r < ;) = 1 — ¢~ %)% We then consider a uniform
increasing transformation of variables #; : ¥; = Fo_l(l —e )i =1,2,...,1,
where Fy(-) : R+ — [0, 1] is an arbitrary continuous and strictly increasing function.
Ranking these contestants by #;s is equivalent to ranking them by ¥;s. A technique
similar to that in Sect. 2.3 allows us to obtain the cumulative distribution function
of ¥;:

Pr(9; <9) = Pr(F, (1 —e ™) < 0)
=1—[1— Fo()F . (10)

Fp(-) can be interpreted as the distribution function of a random variable w;. By Eq. 10,
¥ is identical to the lowest order statistics of w;s out of z;(x;) independent draws.
Contestants are ranked in ascending order by the realized minimum (?; ). Hence, model
(10) and the equivalent race model (9) are statistically “dual” to model (8) in Sect. 2.3,
as well as the benchmark noisy-ranking model (1). Both (8) and (1) rank contestants
in descending order by the realized maximum.

A race model naturally encapsulates a FP ranking mechanism. Ranking contestants
in ascending order of ¥; (which is equivalent to ranking #;) is, in terms of its statisti-
cal nature, a convenient depiction of the following contest. A contestant i expends a
certain level of effort x; to conduct a number z(x;) of parallel scientific experiments,
where each experiment may lead to success at some point in time. The actual time that
contestant i spends on the task is determined by his/her “best shot” or the “most FP”*:
his/her first successful (parallel) experiment.

3.2 The “Antithesis” : an example of non-lottery contests

The FP Ranking model permits us to connect a variety of seemingly disparate mod-
els, but also imposes a limit on this relationship: The lottery contest framework does
not include competitive events that do not honor “the most favorable shocks” when
picking the winners.

We now present a contest model that has a different performance evaluation rule.
It is adapted from the noisy-ranking contest model suggested by Hirshlefer and Riley
(1992). Two contestants simultaneously submit their effort entries x; and x», and they
are ranked by their composite outputs y; = ¢;g;i(x;). ¢; is a random variable that
follows a Weibull (minimum) distribution with c.d.f. F(g;) = 1 — e™%9; while g; (x;)
is a strictly increasing function of one’s effort outlay x;. The contestant with the higher
y; wins, so outputs are ranked in descending order. It can be easily verified that, given
the set of effort entries, the contestants’ ex ante winning odds are given by standard
ratio-form success functions %, i=1,2.

The equivalence of this model to a lottery contest does not hold when there are more
than two contestants. When / = 3, and when only one prize is available, contestant 1
wins with a probability of
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Pl=1— g2(x2) B g3(x3)
g1(x1) + g2(x2)  g1(x1) + g3(x3)
82(x2)g3(x3)

+ ) (11)
g1(x1)g3(x3) + g2(x2)g3(x3) + g1(x1)g2(x2)

The proof is provided in Appendix A.3.

This setting results in a well-defined contest success function, but also departs from
lottery contests. We reveal the source of dichotomy by comparing it to the race model.
We know that in a race, contestants are ranked in ascending order by #;s, which can
be alternatively rewritten as

ti =qlhi(xi), Viel, (12)

where qlf € (0, 00) is a random variable and £; (x;) = 7 ! (x).24 By simple statistical

facts, qlf follows a Weibull (minimum) distribution with c.d.f. 1 — e™% .

Comparing #; with y;, and g/ with ¢;, respectively, readers will immediately realize
that the model of Hirshlefer and Riley (1992) is no different from our race model
except for the ranking rule. One wins in a race by achieving a smaller #; (when ranked
in ascending order). In contrast, a contestant in Hirshlefer and Riley (1992) wins by
a larger y; (when ranked in descending order). The Weibull (minimum) distribution
indicates the distribution of the incidence of the “minimum” across a series of attempts.
With ascending order ranking (e.g., in a race), the realized minimum arises out of the
most favorable shock. In Hirshlefer and Riley (1992), the realized minimum, however,
represents a contestant’s “least FP” or his/her “worst shot” under the descending order
ranking rule. The dichotomy in the underlying performance evaluation mechanisms
drives this observed disparity.

Hence, the model of Hirshlefer and Riley (1992) is underpinned by a “worst-
performance” ranking. This mechanism represents different economic activities from
those that underlie lottery contests. Hirshlefer and Riley (1992) model depicts situ-
ations where the worst (instead of the best) performance of each contestant across
multiple attempts counts most significantly when they are being ranked for winner
selection. This winner selection rule embodies the widely quoted “wooden barrel prin-
ciple” : the shortest plank determines the amount of water held in a wooden barrel.

4 Concluding remarks

This article sets forth a multi-prize contest model that links its prize distribution out-
come to the ranking of contestants based on their noisy performance. The performance
of a contestant is modeled as the sum of a deterministic output of his/her effort and
a random component that follows a type I extreme value (maximum) distribution.
Contestants exert their one-shot effort simultaneously, and contestants are rewarded
by their ranks.

b Obviously, the function ; (-) : Ry — Ry strictly decreases with one’s effort.
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First, our noisy-ranking model delivers exactly the same success functions as a
multi-prize lottery contest. This statistical equivalence provides an alternative inter-
pretation of the multiple-winner nested contest model (Clark and Riis 1996b, 1998a):
a (simultaneous) winner-selection mechanism (noisy-ranking rule) underlies its liter-
ally sequential lottery process. Second, we illuminate a hidden common thread that
connects a wide variety of seemingly disparate contests (such as rent-seeking contests,
patent races, and research tournaments). Underlying all these contests is a common
noisy-ranking rule that honors the contestants’ most FP. This article therefore provides
a statistical micro foundation that underpins the family of commonly adopted lottery
contest models.
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Appendix A.1: Proof of Lemma 2

The result of Lemma 2 relies on an important statistical property (Property Al
below) of Type-I extreme value (maximum) distribution. Consider an arbitrary rank-
ing outcome. Suppose that an arbitrary set of K(1 < K < I — 2) contestants
are ranked from top 1 to top K by the amount of y;. Let iy indicate the index of
the k-th ranked contestant. Define Ix = {ix,k = 1,..., K}, which is the index
set of the top ranked K contestants. We thus have y;;, > y;, > --- > yj, >
vi,Vj € Qg1 £ T\Ix. We now calculate the conditional probability of a con-
testant n € Qg4 being ranked at (K + 1)-th place. This probability is denoted
by p(n|Ng,x,Ykx), where Nx = (i1,...,ix) denotes the sequence of the top
K -ranked contestants, and Yx = (y;,, ..., yi,) denotes the sequence of the observed
outputs of the top K-ranked contestants.

We now present the following Property A1, which is the key step to establish
Lemma 2.

Property A1 For any given effort entries X > 0 such that ZjeN gj(x;j) >0, the
probability that a contestant n € Q41 is the (K + 1)-th ranked, conditional on that
contestantsiy, iz, . . ., i g are respectively ranked from top 1 to top K, can be expressed
as

&n(xn)

-, Vn e QK+1. (13)
szQK+1 g/(xj)

p(n|Ng, x) =
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The following is the proof of Property Al. Since ¢; are i.i.d., the conditional
cumulative distribution function of €, Vj € Qg1 is described by

F(ejINg,x,Yg) = F(ejly; < yig)

= e e (o0 BV € Qi (14)

where £; = log y;, —logg;(x;),Vj € Q1. It therefore yields the density function:

€j

FejINk. x.Yg) = e 57¢ /[ g e (—00,)).Vj € Qxpr. (15)

As implied by (14) and (15), the conditional distribution of ¢,V € Qg1, only
depends on the minimum of {y; ,k = 1,..., K}, i.e,, y;,, because y;are ranked in
descending order.

We first calculate p(n|Ng, X,Yx), which denotes the probability that a contes-
tant n € Qg4 is the (K + 1)-th ranked conditioning on that contestants Nx =
(i1, 12, ..., k) are, respectively, ranked from top 1 to top K and their observed out-
puts are Y. Note that &, + log g, (x,) —log g;(x;) < &;,Ve, € (—00,&,),Vj,n €
Qx+1, j # n. We thus have

p(n|Ng, Yk, X)
=Pr(e; < ent+loggn(x,)—logg;(x;),Vj € Qxt1, ] #n.)
&n
= / [ ey, js#n F (€nt10g gn(xn)—log g (x;) Nk, X, Y)|
—0oQ0
X f(8n|NK7 XvYK)dsn

En

—(en+loggn(xn)—logg;(x;)) —&; —é —&
—e ) —e °J —g,—e fn —etn
Z/[HjEQK.H,j#ne /e ]e n /e de,

—00
&n
—£; —(en+loggn(xn)—logg;(x;))
— . —e J . X —e 7
—(HJGQK+11/e )/[HJEQKH,J#HE ]
—00

xe ¢ " dg,
g"
:(HjeQK_Hl/e_e '/)/exp —gp—e | 1+ Z &) dey.
00 JEQK+1.JFn §n(xn)
(16)

g (x)) g (x)
Let An, 0, = log (1 + ZjeQKH,j;ﬁn g:,(xi)) = log (ZjeQKH gi,(x,l,)) , then
p(n|Ng, Yk, X)
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&n

= (n/€QK+1 l/e_eisj) / eXp I:_En - 9_(8'1_)%9’(“)] dey

-0
én_}ln,K
= (HjGQKH l/e_e_']) exp(—An,Qxi1) / expl—e, — e “n]de!
—00

= (HjeQK+l l/e_ei j) exp(—An,Qx.1) exp[—e_(é”_)‘"”()]

= | &n (Xn)/ Z gjxj) |- {(H./GQK+1 exp[efgj]) exp[_e*(én*ln,QKH)]}
L JEQK 41 |

= | &n (xn)/ z gj (xj) - exp Z e—g‘j — e*(én*ln,QK+1) . (17)
L JEQK 11 i J€QK 11

Note (ZjEQK-H e_gj)_e_(én_knﬂkﬂ) = (ZjEQK+I o™ (enic HIoB Snc G )lo 8/ 47))

— exp{~ [ong + 108 gy (on) — 102 g0 (i) — (02 (2 ey, £505) — Tog ga )]}
. g

It boils down to eTnK) {ZjEQK+l 8= 2 jcak. gj(xj')} =0.

ang

(16) and (17) give

p<n|NK,YK,x>=gn<xn>/ > gy (18)

JEQK+1

(18) is a very strong result as it states that p(n|Ng, Yk, x) does not depend on Yk .
Aggregating over all possible Yk, we must have

p(n|Ng, x) = gn(xn)/ Z gi(xj),neQgy, K=1,...,1 -2,

JEQK+1

which completes the proof of Property Al.

Property A1 provides the conditional probability of each contestant is being ranked
(K + 1)-th given that he/she is not among the first £ highest. By Property Al, the
conditional probability of a contestant being ranked as the (K + 1)-th is indepen-
dentof (x;,, ..., x;; ), the effort entries of these top K -ranked contestants. Combining
Lemma | and Property Al, Lemma 2 can be concluded immediately, which provides
the probability distribution of every arbitrary complete ranking.

Appendix A.2: Proof of Theorem 2

Sufficiency: Consider model logy; = {logg(x;) — b} + [&; + b] = log{gi(x;)/
exp(b)} + (&; + b),which is equivalent to our original model log y; = log g(x;) + &;.
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Note that €; + b follows a standard type I extreme-value (maximum) distribution with
with c.d.f. of F(w) = e~¢ ", thus Theorem 1 holds for gi(xi) = gi(x;)/ exp(b) for
any pair (I, L) such that / > 2 and I > L > 1, which leads to the same prize alloca-
tion probabilities of Theorem 1. Thus, when I > 3 and I > L > 1, Theorem | means
that if &; follows a type I extreme-value (maximum) distribution with c.d.f. of F'(¢;) =
eme it , our noisy-ranking model with observed performance y; described by (1) is
equivalent to the generalized multiple-winner nested contest model C(I, g(-), V). In
other words, as long as ¢; follows a type I extreme-value (maximum) distribution with
cdf. of F(e) = e +b), the two models deliver the same probability for every
prize allocation.

Necessity: We first consider the case of / > 3 and L = 1, i.e., a single-prize con-
test with at least three contestants. Yellott (1977) has shown some nice results, which
imply that when / > 3 and L = 1, the winning probabilities of every contestant
i takes the form of Z,iil(—;;)(w only if ;s follow a type I extreme-value (maximum)
distribution. According to his Definition 3 (p.120), our noisy-ranking model falls into
the family of Thurstone models. His Lemma 1 (p.116) shows that the Choice Axiom
(Axiom 1 in Luce 1959) is satisfied if and only if there exists a set of scale val-
ues (vi, v2, ..., vy) such that contestant i is selected as the winner with probability

Yi _ His Theorem 5 (p.135) shows that a Thurstone model satisfies the Choice

> jel V)

Axiom if and only if the random noises ¢;s follow a type I extreme-value (maximum)
. . . . . . . . . . _p—(agj+b) .

distribution, i.e., the cumulative distribution function of ; is F(g;) = ¢~ ¢ “it? With

a>0,¢g € (—o00,+00), Vi € I Consider model log[(y;)*] = {log[g; (x;)]* — b} +
[ae; + b] = log{lgi(x;)]*/exp(D)} + [ae; + b],which is equivalent to our original
model log y; = log g(x;) + &;. Clearly, as a > 0, for our ranking model, ranking the
contestants according y; is equivalent to ranking them according to (y;)“. Note that
ag; + b follows a standard type I extreme-value (maximum) distribution with with

c.d.f. of F(w) = e=¢ ". The same procedure of showing Lemma 1 would lead to that
@ixi)*/exp)  _ _ (gi(xi)*
e/ exp(d) T 2 ep(gi (N

for a general set of production functions

For

contestant i’s winning probability is given by 5

. .. . . . gi (x;)
this probability to coincide with Sas )

g and any set of effort profile x, we must have a = 1. Therefore, the uniqueness of
type I extreme-value (maximum) distribution for &; with c.d.f. of F(g;) = e—e it
is guaranteed, which leads to the ratio-form winning probability % forL =1
for our noisy-ranking model. This result means that if the probability that contestant
i’s performance is the highest among all contestants takes a form of % for
our noisy-ranking model, then ;s must follow a type I extreme-value (maximum)
distribution with ¢.d.f. of F(e;) = e~ ",

We now turn to the case where I > 3 and I > L > 2. Suppose the equivalence
holds for L > 2. Given that the equivalence holds, we have that the probability of
any prize distribution outcome {ik}lé=1 is given by (7) for our noisy-ranking model.
Consider L’ = L — 1. The probability of any prize distribution outcome {ix }1€/=1 ,1.e.,
contestants {iy} ,f/: | win the first L’ prizes, must equal to the probability that contestants

{i k}llglzl win the first L prizes while the L-th winner can be any one among those who
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is not among {ik}llg;l. Thus, according to (7), we must have

Uiy = D pUiehe. i)

irel\(ix},

E: ||:HL/ &, (xi,) i| ' gip (xi,) ]
k=1 <1 i -
Zk’:k 8iy (xik/) Zk/el\{ik}£;1 8iy (xzk/)

iLel\(i}E |

[ % 8iy (Xiy) :| 8iy (Xip)
k=1 1 : ; ) -
ZId:k 8iys (xik/) iLEl\{ik},Ig; Zk’EI\{ik}llgzl 8ip (xzk/)

L 8ir (xi)
k=1 Ji .
Zk’:k gik/ (xik/)

Continuing this process, we will have that the probability that contestant i wins the first

prize Vj is given by %, Vi e I for our noisy-ranking model. Note that for our
jel 8j X

noisy-ranking model, the probability that contestant i wins the first prize is the prob-

ability that the contestant’s performance y; is the highest among all contestants. The

discussion of the previous paragraph has revealed that if the probability that contestant

i’s performance is the highest among all contestants takes a form of <859 for our

2jer8j(x))
noisy-ranking model, then ;s must follow a type I extreme-value (maximum) distri-
bution. Therefore, the uniqueness of type I extreme-value (maximum) distribution for

g;s with c.d.f. of F(e;) = e~ """ must follow.

Appendix A.3: Proof of the “Antithesis”
We now prove that when there are three contestants (I = 3), the noisy-ranking contest

model presented in Sect. 3.2 does not deliver a standard lottery contest. Adapted from
Hirshlefer and Riley (1992), we utilize a formulation with multiplicative noise term:

yi = qigi(xi), (19)

where the g; follows a Weibull minimum distribution with c.d.f. 1 —e~% . (19) can be
equivalently expressed as

log y; = log g; (x;) + logg;.

This distribution of &; = log g; is a type I extreme-value (minimum) distribution.
The c.d.f. and p.d.f. of &; are thus F(g;) = 1 —exp(—e®),and f(g;) = et respec-
tively. Consider the case of three contestants (I = 3). Given the effort x;, contestant
1 wins with the following probability:
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+00
/[Hj=2,3F(81+10g81(X1)—loggj(xj))]f(Sl)d81
—0Q
+00
— /[(1_exp(_68|+10gg1(x1)floggz(xz)))(l_exp(_e€1+logg1(x|)710gg3(X3))]
—00
xef17¢" deg,
—+00
- 1— /[exp(_651+10g81(Xl)*IOgEZ(XZ))_exp(_eel‘HOggl(xl)*l()gg.?(x.%))]
—00
xef1 ¢ dg,
+00
+ / exp(_es1+logg1(x1)—logg2(xz)) .exp(_esl+10gg1(x1)—10gg3()(3))
—0oQ
'esl_egldsl
+00 +00
=1- / exp (el—e*" (1+gl(xl)))d81— / exp (81—681 (l—i—gl(xl)))dal
g2(x2) 83(x3)
+00
n / exp (81_681 (1+g1(xl)+g1(X1))) der
82(x2)  g3(x3)
i () e o)
81 g1 (x
- / exp (Sl_eslﬂ—log(l—i-g;(x;))) dej— / exp (81_e£1+log(l+g;(x;)>) de,
e Gp g6
g1 (x g1(x
+ / exp (81_es1+log(1+gi<xi)+g§(x;)))dgl
—0Q
I #1C5) N <1C5))
gr(x)+g2(x2)  g1(x1)+g3(x3)
n 82(x2)g3(x3)
81(x1)83(x3)+82(x2)g3(x3)+g1(x1)g2(x2)
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