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Abstract

We consider a two-stage contest, in which only a subset of contestants enters the

finale. We explore the optimal policy for disclosing contestants’ interim status after the

preliminary round, i.e., their interim ranking and elimination decision. The optimum

depends on the design objective. We fully characterize the conditions under which

disclosure or concealment emerges as the optimum. We further allow the organizer

to bias the competition based on finalists’ interim rankings, which endogenizes the

dynamic structure of the contest. Concealment outperforms in generating total effort,

while disclosure prevails when maximizing the expected winner’s total effort.
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1 Introduction

Many contest-like competitive events proceed through multiple phases. Ultimate success

demands on more than a single stroke of effort; instead, it requires continuous input. Two

phenomena are widespread in these scenarios. First, contenders are often eliminated suc-

cessively along a hierarchical ladder. Consider, for instance, the bid for the 2021 Summer

Olympics: Six cities submitted proposals and three were slated for candidacy. In the final

round, Tokyo beat Madrid and Istanbul as the grand winner. Organizational hierarchies pro-

vide another close analogy (Rosen, 1986). Twenty-three candidates were initially considered

in the race to succeed Jack Welch at GE, and eight survived the first round of screening.

The slate was further narrowed to three, and Jeff Immelt was the chosen successor. Various

architectural competitions and grant calls are similarly organized.

Second, interim outcomes in the series may generate spillover to surviving contenders’

relative standing in future stages. In track events, for instance, the best performers in qual-

ification rounds are assigned middle lanes in heats and finals. This assignment rule rewards

early performance, because middle lanes allow the runners to easily observe their competitors.

In the CEO succession process, firms often appoint their leading candidate president or chief

operating officer (COO). The candidate thus obtains an advantage in securing resources

and developing managerial skills. Alternatively, in a grant call, an applicant may receive

more detailed and constructive advice on revising his proposal when reviewers deem the

submission to be more promising, which enables more productive revision and more careful

and serious review after resubmission. The differentiated treatment given to contenders—

which depends on their early performance and biases the subsequent competition—is often

deliberately chosen by the administrators of the competitive events.

These observations compel us to explore two questions for optimal contest design in a

two-stage sequential-elimination contest: (i) the optimal disclosure of contestants’ interim

status—i.e., whether one still remains in the race or has been eliminated and/or how he

has been ranked relative to the others—prior to late-stage competition; and (ii) the optimal

biases imposed on late-stage contestants based on their interim ranking.

Whether to disclose the interim outcome of a sequential elimination contest has subtle

effects on contestants’ incentives, because the information allows contestants to assess their

winning odds more precisely. This ultimately determines the perceived marginal return of

efforts. Previous studies of elimination contests have traditionally assumed that contestants

are perfectly informed of where they stand before sinking their bids (e.g., Gradstein and

Konrad, 1999; Moldovanu and Sela, 2006; and Fu and Lu, 2012a). We first consider a simple

baseline model, with N ≥ 3 symmetric contestants participating in the first stage, M < N

surviving to the second stage, and one being picked as the ultimate winner. An organizer

either discloses the interim elimination decision to contestants or conceals it; she decides
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on the disclosure scheme and announces it publicly prior to the competition. The choice of

biases (differential treatments) imposed on finalists is abstracted away.

Suppose that the announcement is withheld. A contestant, in a late stage, is prevented

from learning his status. The uncertainty deceives actual losers into continuing their effort

supply, while attenuating the incentive of actual survivors. In turn, this uncertainty in

the late stage affects contestants’ early incentives to bid for advancement. The optimum

must address all of these concerns. The trade-off can be witnessed in the debate regarding

firms’ succession planning. Despite the plethora of high-profile CEO succession horse races

that unfold in the spotlight—e.g., those at GE, P&G, Johnson & Johnson and, recently,

MetLife1—succession in many organizations takes place quietly: The preference has been to

keep the process secret simply to “avoid sapping the motivation of those who aren’t on the

fast track” (Conger and Fulmer, 2003).2

Opacity causes fundamental changes in the nature of strategic interactions in the com-

petition. Contestants are uninformed of their status, which forces them to remain active

throughout the contest. Despite the temporal sequence, the dynamic strategic linkage be-

tween stages dissolves, and contestants behave as if they commit to their first- and second-

stage efforts altogether. The dynamic competition is converted into a (strategically equiva-

lent) static contest that requires efforts in two dimensions, and renders early and late efforts

complementary to each other: A unilateral increase in one’s second-stage effort improves his

conditional probability of winning the prize, which in turn amplifies the marginal return to

early effort and encourages early bidding for advancement. In contrast, under transparency,

late effort is chosen contingently only after learning one’s survival; a contestant, when making

his early effort decision, would factor in the future rent dissipation caused by his (contingent)

late effort, which, recursively, diminishes his continuation value in the dynamics and discour-

ages his early bidding. The sharp differences caused by disclosure schemes yield interesting

and subtle implications for contest design.

We show, in the baseline setting, that the optimal disclosure scheme depends on the

organizer’s objective. Two alternatives are considered: (i) maximization of total effort in the

overall contest and (ii) maximization of the expected winner’s total effort along the ladder—

i.e., the sum of the winner’s efforts in the early and late stages.3 Opacity retains a larger

number of active contestants in the late stage, while leading each to bid less than a surviving

contestant would under transparency. Moreover, each contestant bids less in the early stage

1Eli Lilly & Co. even allows its employees to access their rankings in the succession planning system.
2The implication of our analysis should be interpreted with caution for the specific context of CEO

succession races. Our model primarily focuses on a moral hazard problem and the incentive effect of a
disclosure scheme. However, firms may select CEOs based on alternative criteria other than efforts or
performance—e.g., leadership style, match with the corporate culture, etc.

3In a principal-agent setting, Levitt (1995) shows that the optimal incentive scheme depends on whether
the principal’s payoff is determined by all agents’ total output or the best output.
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under transparency: As stated above, anticipated future (contingent) effort discounts the

marginal return to contestants’ early efforts. The optimal information disclosure scheme

thus hinges on the three-way trade-off. We show that opacity leads to higher total effort in

the overall contest.

The answer is less than explicit when the organizer maximizes the expected winner’s

(individual) total effort. A tension arises for each contestant: One bids less in the early

stage under transparency than under opacity, while he bids more once he manages to enter

the finale. A sufficient and necessary condition is provided to characterize the optimum,

which depends sensitively on the structure of the contest and the contest technology. First,

transparency is more likely to prevail when the contest is noisier—i.e., when a higher effort

is less likely to lead to a win. Second, transparency is more likely to prevail when the contest

involves a large number of participants but admits a smaller number of finalists—i.e., when

the contest involves a tougher elimination process.

We further generalize the model to allow the organizer to bias the late-stage competi-

tion. She assigns a weight to each contestant’s second-stage effort entry based on his interim

ranking. This flexibility creates asymmetry among ex ante symmetric contestants. The

baseline model can be viewed as a special case, since outright elimination is equivalent to

assigning an excessively small weight, by which the contestant’s winning odds are reduced

to zero. The organizer announces the disclosure scheme and the rank-based weighting rule

altogether. Under transparency, contestants are informed not only of their status in the

competition, but also the weight assigned to them in the second-stage competition. Under

opacity, contestants learn neither. The aforementioned key appointment for the frontrunner

in a CEO succession race conspicuously announces candidates’ status. However, differen-

tiated treatment can be exercised in quieter and subtler ways. For instance, a preferred

candidate may not be appointed to a key position explicitly, but can arguably receive more

attention, support, and mentorship in the evaluation and development process.4 In a grant

call, reviewers’ and judging panels’ preferences are typically kept secret from applicants.5

We characterize the optimal rank-based bias rule for a two-stage contest under both trans-

parency and opacity. First, the comparison between transparency and opacity is straight-

forward when the contest can be biased: Opacity generates higher total effort for the overall

contest, while transparency leads to a higher expected winner’s total effort. Second, asym-

metric competition always arises in the finale, and the optimal contest rewards superior

early performance by assigning larger weights for higher ranks. Subtle trade-offs arise in the

4For instance, incumbent CEOs and senior board members at GE and Xerox have been known to expend
effort on grooming leading candidates. Anne M. Mulcahy, the former CEO of IdeaXerox, devoted a decade
to grooming Ursula Burns as her preferred successor (see Mulcahy, 2010).

5 See, e.g., the Australian Research Council’s Discovery Program (https://www.grants.gov.au/?event=
public.FO.show&FOUUID=8194D407-CEA7-D8C5-793FD73E8CCFC0BD), which does not disclose applicants’
ranking when inviting an applicant to respond to external reviewers’ assessment of their proposal.
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dynamic setting when the organizer imposes biases on the contest, which will be detailed in

Section 4.

The rest of the paper proceeds as follows. In the remainder of this section, we provide

a brief review of the relevant literature. We next set up the baseline model in Section 2

and conduct the analysis in Section 3. In Section 4, we allow the organizer to impose

identity-dependent treatment on the finalists based on their interim rankings. In Section 5,

we discuss extensions of the model. In Section 6, we conclude. Equilibrium characterization

of the baseline model and proofs of our main results are collected in Appendices A and B,

respectively.

Contributions and Link to the Literature Our contributions to the contest literature

are twofold. To the best of our knowledge, we are the first to explore the natural question of

the optimal disclosure scheme in sequential-elimination contests. We identify the contexts

in which transparency or opacity may emerge as the optimum. In addition, our analysis in

the extended model contributes to the long-standing discussion of optimally biased contests

in a dynamic setting.

The literature on sequential-elimination contests dates back to Rosen (1986). Rosen

(1986), Gradstein and Konrad (1999), Moldovanu and Sela (2006), and Brown and Minor

(2014) all assume that in the preliminary stage of an elimination contest, contestants are

split into multiple subcontests; one survives in each subcontest and advances to the next

stage, and all survivors are split and matched for the next round of elimination. In con-

trast, Fu and Lu (2012a) consider a “pooling” approach by which all remaining contestants

compete in each stage. Fu and Lu adopt multi-winner nested Tullock contests, because the

competition in each stage is inherently a multi-prize contest. We follow Fu and Lu’s modeling

approach in a two-stage setting, because the pooling structure more closely fits the hierarchi-

cal competitions we study in this paper—e.g., grant calls, bids for the Olympics, succession

races, etc. Arve and Chiappinelli (2019) study a three-player two-stage elimination contest

and assume that one player is subject to a budget constraint. All of these studies assume

that the elimination decision is publicly known, while in our study its observability is the

primary design variable. Zhang and Wang (2009) study a two-stage contest, in which four

players are matched into two paired competitions in the preliminary, with the two winners

advancing to the finale; an organizer decides whether to disclose contestants’ early bids. In

contrast to our study, they assume private types and focus on contestants’ strategic inference

of opponents’ types, while keeping the elimination decision transparent and the hierarchical

structure fixed.

Our paper is conceptually linked to the literature on interim feedback and information dis-

closure in dynamic contests (Gershkov and Perry, 2009; Aoyagi, 2010; Ederer, 2010; Gürtler
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and Harbring, 2010; Goltsman and Mukherjee, 2011), but stands in sharp contrast in terms

of both focus and model settings. These studies typically consider two-player two-period

contests, with the winner being determined by players’ overall performance summed up over

the two periods; they then explore whether a contest organizer should reveal intermediate

performance. In contrast, we focus on disclosure of the elimination decision and the biases

that depend on interim rankings; this naturally requires a model that involves sequential

elimination and three or more players.6

An extensive literature examines the optimal biases in contests that manipulate the

balance of the competition. This includes Che and Gale (2003); Konrad (2002); Nti (2004);

Fu (2006); Franke (2012); Franke, Kanzow, Leininger, and Schwartz (2013, 2014); Kirkegaard

(2012); and Fu and Wu (2020), among others.7 All of these studies occur in static contest

settings, while ours focuses on hierarchical competitions in dynamics. In a best-of-three

contest between two ex ante identical contestants, Barbieri and Serena (2018) show that

the contest organizer can bias the competition to improve its performance. Meyer (1992)

considers a two-period contest between two individual contestants, and shows that it is

optimal to set a bias in favor of the interim frontrunner.8 These studies assume full disclosure

of interim outcomes, while the disclosure scheme is the primary interest of our study. In

addition, their settings do not involve elimination in hierarchy. Cohen, Maor, and Sela (2018)

study a two-stage elimination contest similar to ours, in which the organizer can choose to

favor the top-ranked finalist. They focus on optimal favoritism, but assume that contestants

are fully informed of the interim outcome.

2 Baseline Model

There are N ≥ 3 risk-neutral identical contestants involved in a two-stage contest. In

the first stage, all contestants participate, and M ∈ {2, . . . , N − 1} avoid elimination and

are qualified for the finale.9 In the second stage, a winner is selected from the M qualified

finalists as the recipient of a prize V > 0. Without loss of generality, we normalize V = 1.

6Lizzeri, Meyer, and Persico (2002) consider the optimal interim performance feedback policy in a dynamic
moral hazard model, in which the agent cannot observe the outcome of his effort. The principal decides
whether to disclose the agent’s performance before he chooses his second-period effort. Lizzeri et al. consider
a setting with a single agent, while we consider competitions among multiple players.

7The majority of these studies embrace the notion of leveling the playing field, but a handful of studies
identify the contexts in which this conventional wisdom fails. See, for instance, Chen (2016); Drugov and
Ryvkin (2017); and Fu and Wu (2020).

8The majority of these studies assume that biases are set strategically to address the moral hazard
problem. In contrast, Meyer (1991) views a contest as a bounded-rational learning process, and shows that
biases could facilitate learning.

9The game effectively reduces to a static winner-take-all contest when M = 1 or N . We discuss this
possibility in Section 5.2.2.
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2.1 Winner-selection Mechanism

We adopt a multi-winner nested Tullock contest (Clark and Riis, 1996, 1998) to model

the prevailing winner-selection mechanism. Let C(N,N) denote a static contest with N ≥ 2

participants and N ∈ {1, . . . , N} prizes to be given away. Clark and Riis (1996, 1998)

conveniently depict the selection mechanism as a sequential lottery process that consists

of a series of independent draws. Let contestants be indexed by i ∈ {1, . . . , N}. They

simultaneously submit effort entry ei ≥ 0. Once a contestant is picked as the recipient of

a prize, he is immediately removed from the pool of contestants eligible for the rest of the

prizes, since each contestant is eligible for at most one prize. Let Ωm be the set of contestants

who remain eligible for the mth-draw and eΩm be the effort profile of all contestants in the

set Ωm, with m ∈ {1, . . . , N}. Then the probability of a contestant i’s receiving the mth

prize conditional on him not having been picked in the previous m− 1 draws is given by

pim

(
eΩm ; Ωm

)
=


(ei)r∑

j∈Ωm(ej)r
, if eΩm 6= (0, . . . , 0),

1

N −m+ 1
, if eΩm = (0, . . . , 0),

(1)

where r indicates the discriminatory power of the contest technology. The process continues

until all N winners have been drawn. The usual winner-take-all Tullock contest is a special

case of the model, with N = 1.

Despite the convenient analogy to a sequential lottery process, Fu and Lu (2012b) show

that the multi-winner nested Tullock contest is uniquely underpinned by a noisy ranking

tournament with an additive noise following a type-I extreme-value distribution. Lu and

Wang (2015) further provide an axiomatic foundation for the model. Fu, Wu, and Zhu

(2020) formally establish equilibrium existence and uniqueness in this contest game under

plausible conditions.

2.2 A Two-stage Elimination Contest

We consider symmetric competitions among homogeneous contestants.10 As stated above,

the contest proceeds in two stages. In each stage, contestants simultaneously submit their

10We assume homogeneous contestants for the sake of tractability. The first-stage competition is modeled
as a multi-prize contest, which allows for tractable analysis only in symmetric settings. Our model thus
depicts contexts in which contestants do not differ substantially from each other in terms of abilities. Con-
sider, for instance, high-profile architectural competitions in which only prestigious design firms can survive
prescreening. Alternatively, imagine the succession races in major listed companies: All shortlisted candi-
dates in advanced stages are slated from a large talent pool, and the variance in their abilities is presumably
smaller than that in the entire organization. For instance, consider the succession race at GE to replace Jack
Welch. According to Welch, he was prompted by his “nose and gut” to choose Jeff Immelt because all of
the candidates were “equally capable” (Welch and Byrne, 2003).
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effort entries and the effort incurs a unity marginal cost.11 The first stage selects M finalists

and eliminates the rest, and one of the finalists is selected in the second-stage competition

to receive a single prize of value V = 1. The contest mechanism described in Section 2.1 is

adopted for winner selection. That is, the competition in the elimination stage is a multi-

winner nested Tullock contest with N = N participants; N = M winners receive an identical

prize that entitles them to advance. The finale is a winner-take-all Tullock contest among

the M survivors, i.e., N = M and N = 1.

We focus on a symmetric pure-strategy equilibrium, with contestants, in each stage,

placing the same amount of bid. As is well known in the contest literature, pure-strategy

bidding dissolves when the contest is excessively discriminatory—i.e., when r is sufficiently

large—and mixed-strategy bidding equilibria are often elusive,12 especially in our dynamic

setting (see, e.g., Fu and Lu, 2012a). We focus on the case of moderate r, which ensures the

existence and uniqueness of a symmetric pure-strategy bidding equilibrium.13

In particular, define the function f(N,M) :=
∑M−1

g=0
1

N−g and the cutoff r(N,M) :=

min
{

1, M
(M−1)+(N−M)f(N,M)

}
. The following regularity condition is imposed throughout Sec-

tion 3.

Assumption 1 r ∈
(
0, r(N,M)

]
.

We require that discriminatory parameter r be contained by the upper bound r(N,M),

i.e., r ≤ 1 and r ≤ M
(M−1)+(N−M)f(N,M)

. The first condition guarantees that the winning

probability specified in Equation (1) is concave in a contestant’s effort and thus ensures that

a symmetric pure-strategy equilibrium exists for the case of transparency. As will become

clear later, the latter condition ensures that a symmetric pure-strategy equilibrium exists

under opacity. Consider a case of N = 6. The cutoff r(N,M) takes the value of 0.8108,

0.7792, 0.8163, and 0.9174, respectively, for M = 2, 3, 4, and 5.

2.3 Disclosure Schemes and Equilibrium Preliminaries

The contest is governed by an organizer who chooses the disclosure scheme for the contest

from two alternatives: full disclosure (transparency) and no disclosure (opacity).14 Under

the former, contestants are informed of their rankings upon completing the first-stage com-

petition, and thereby learn whether they have survived the elimination. Under the latter,

rankings in the first-stage competition are kept secret, so that contestants are uncertain

11We consider convex cost functions in Section 5.1.1, and the main results are robust.
12See Alcalde and Dahm (2010) and Ewerhart (2015, 2017).
13It is implicitly assumed that the discriminatory powers of the contest technology across the two stages

are identical. We will relax this assumption in Section 5.1.2.
14In Online Appendix A, we allow for partial disclosure and show that this is suboptimal.
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about their status. The organizer commits to and publicly announces the disclosure policy

prior to the contest.

Under transparency, the contest renders a standard two-stage complete-information se-

quential game. Let (e1, e2) denote the symmetric equilibrium of the contest game, where et,

t ∈ {1, 2} is a contestant’s effort in stage t. The game can be solved by backward induction.

In the first stage, each of the N contestants exerts effort to advance, i.e., competing for

one of the M tickets to the finale. Each ticket is worth 1
M
− e2 to a contestant in stage 1: He

anticipates symmetric equilibrium play in the second stage, so each finalist stands a chance

of 1
M

to win the prize of unity value and exerts an effort e2. Let Pm(e′1, e1) be the ex ante

probability of a contestant’s being ranked in the mth place, m ∈ {1, . . . , N}, when he bids

e′1 and all others exert an effort e1. We can obtain that

Pm(e′1, e1) ≡ (N − 1)!

(N −m)!
×

m−1∏
j=1

(e1)r

(N − j)(e1)r + (e′1)r

× (e′1)r

(N −m)(e1)r + (e′1)r
.

Each contestant chooses his effort e′1 for the following maximization problem:

max
{e′1}

 M∑
m=1

Pm(e′1, e1)

× ( 1

M
− e2

)
− e′1, (2)

where the sum
∑M

m=1 Pm(e′1, e1) is the probability of his advancing to the finale.

Let (ê1, ê2) denote the symmetric equilibrium of the contest game under opacity, where

êt is a contestant’s effort in stage t ∈ {1, 2}. Opacity leads to a drastically different strategic

problem than transparency. Under transparency, the choice of early effort e1 factors in one’s

own future effort e2 if he survives the elimination, which is seen in the continuation value
1
M
− e2. In contrast, under opacity, one’s late-stage effort, ê2, is no longer contingent on

the interim outcome because a contestant is uninformed of his own status. The dynamic

linkage between stages thus dissolves despite the temporal sequence: A contestant’s choice

of the effort pair (ê1, ê2) is strategically no different from that in a static game, in which

his strategy involves two simultaneous actions. Suppose that all others use the same effort

strategy (ê1, ê2); a contestant chooses (ê′1, ê
′
2) for the following maximization problem:

max
{ê′1,ê′2}

 M∑
m=1

Pm(ê′1, ê1)

× (ê′2)r

(ê′2)r + (M − 1)(ê2)r
− ê′1 − ê′2, (3)

where
(ê′2)r

(ê′2)r+(M−1)(ê2)r
is the conditional probability of one’s winning the second-stage com-
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petition provided that he indeed survives.15

For brevity, we relegate the detailed equilibrium analysis to Appendix A and present

contestants’ equilibrium efforts in the following table.

First-stage Individual Effort Second-stage Individual Effort

Transparency e1 =
r[M−(M−1)r]

NM2 ×
∑M

m=1

(
1−

∑m−1
g=0

1
N−g

)
e2 = (M−1)r

M2

Opacity ê1 = r
NM
×
∑M

m=1

(
1−

∑m−1
g=0

1
N−g

)
ê2 = (M−1)r

NM

Table 1: Equilibrium Individual Effort under Different Disclosure Schemes.

2.4 Objectives for Contest Design

We consider contest design—i.e., the choice of disclosure policy—for two objectives: (i)

maximization of total effort in the contest and (ii) maximization of the expected winner’s

total effort in the contest. The former objective has been conventionally adopted in the

contest literature. The latter, however, is gaining increasing attention (see, for example,

Baye and Hoppe, 2003; Serena, 2017), given its relevance in a broad array of contexts.16

Consider an architecture competition, in which only the quality of the selected design accrues

to the buyer’s benefit.

The equilibrium total effort under transparency and that under opacity, denoted by

TET (N,M, r) and TEO(N,M, r), respectively, are

TET (N,M, r) := Ne1 +Me2, and TEO(N,M, r) := Nê1 +Nê2.

Similarly, we denote by WET (N,M, r) and WEO(N,M, r) the expected winner’s total effort

under transparency and that under opacity, respectively, with

WET (N,M, r) := e1 + e2, and WEO(N,M, r) := ê1 + ê2.

15The opaque contest model strategically resembles the setting of Lu, Shen, and Wang (2019). They
consider a multi-battle contest that allows for performance bundling: Two contestants meet each other in a
series of competitions, and one receives the prize only if he prevails in all component battles. The model is
also related to contests with multi-dimensional actions, which include Arbatskaya and Mialon (2010, 2012);
Melkonyan (2013); and Lagerlöf (2020). In our model, a contestant’s early and late efforts enter two separate
winner-selection processes—i.e., competitions in the early and late stages—while in theirs, multiple actions
are converted into a single output through a production function, and the composite output enters a single
winner–selection process.

16The second objective is parallel to the widely adopted objective of maximizing the expected highest
effort in the perfectly discriminating contest, or equivalently, an all-pay auction (e.g., Moldovanu and Sela,
2006).
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3 Analysis of the Baseline Model

In this section, we compare the contest’s performance—i.e., the total effort and expected

winner’s total effort—under different disclosure schemes. Before we present the result, we

briefly discuss the strategic implications caused by the different disclosure schemes for the

contest game, which will pave the way for our discussion of the main result.

From the maximization problem (2) under transparency, a contestant in the first stage

factors his future effort cost—i.e., e2—into his decision on his early bid, which erodes his

continuation value and therefore diminishes the marginal return to e1. The tension between

early and late efforts, however, does not take place under opacity: As explained above, the

dynamic contest is strategically equivalent to a static two-action decision problem. The

maximization problem (3) under opacity implies that a contestant’s efforts in the two stages,

ê1 and ê2, are complementary to each other: Holding other things equal, a higher ê1 improves

the chance of surviving elimination, which in turn increases the marginal return to ê2, since

the late effort is more likely to count for his ultimate win; a higher ê2 does the same to the

marginal return to ê1, because it is expected to increase his probability of winning the prize,

which in turn incentivizes him to vie to advance in the first place. Such positive reflexive

interactions are in sharp contrast to those under transparency.

Based on the equilibrium results in Table 1, we can compute the equilibrium total effort

and the expected winner’s total effort under each disclosure scheme. Let r† := 1
f(N,M)

∈
(0, r(N,M)]. A comparison leads to the following.

Proposition 1 (Optimal Disclosure Scheme) Suppose that Assumption 1 is satisfied,

and consider an N-M two-stage elimination contest. Then:

(i) Opacity always generates a higher total effort than transparency, i.e., TEO(N,M, r) >

TET (N,M, r).

(ii) There exists a threshold M † ∈
{
bN

2
c, . . . , N − 2

}
such that

(a) for 2 ≤ M ≤ M †, transparency generates a higher expected winner’s total effort

than opacity, i.e., WET (N,M, r) > WEO(N,M, r);

(b) for M † < M ≤ N − 1, transparency generates a higher expected winner’s total

effort than opacity—i.e., WET (N,M, r) > WEO(N,M, r)—if and only if r < r†.

Proposition 1 shows that opacity always prevails when the organizer aims to maximize

total effort. To better understand the result and interpret it in depth, it is important to

note that a switch from opacity to transparency triggers three effects. First, it resolves the

uncertainty and leads each survivor to bid more in the second stage. Second, it reduces the
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number of active contestants in the second stage from N to M . Third, it alters contestants’

incentive to bid for advancement to the finale.

The first effect leads to the observation of e2 > ê2, i.e., higher individual effort under

transparency. Recall by Table 1 that e2 = (M−1)r
M2 and ê2 = (M−1)r

NM
, which implies that

Me2 = Nê2: The first two effects cancel each other out, and the total effort generated in

the second stage of the competition is constant across the two scenarios. As a result, the

optimum that maximizes total effort in the contest depends solely on the comparison of

equilibrium efforts in the first stage under different disclosure schemes.17

The discussion laid out in the beginning of the section and a comparison between (2)

and (3) reveal the answer. Under transparency, a contestant in the first stage takes into

account his future effort cost—i.e., e2—when choosing e1: By (2), the ticket to the finale

is worth 1
M
− e2. Under opacity, a contestant is concerned only about the probability of

winning the finale conditional on his surviving the elimination stage when choosing ê1, as in

a static contest with two simultaneous actions. He expects a conditional winning probability
1
M

, which implies that the contestant expects a higher marginal return to ê1, as ê2 does not

reduce the marginal return to early effort, as shown by (3). This incentivizes contestants

to bid more for advancement under opacity—i.e., e1 < ê1—and leads to the prediction of

Proposition 1(i).

The optimum that maximizes the expected winner’s total effort, however, is less than

explicit because e1 < ê1 and e2 > ê2. It ultimately depends on the specific contest en-

vironment (N,M, r). Recall that f(N,M) ≡
∑M−1

g=0
1

N−g . Examining the conditions in

Proposition 1(ii.b), we have that the cutoff r† ≡ 1
f(N,M)

strictly decreases in M and increases

in N . This observation, together with the condition established in Proposition 1(ii.a), im-

plies that transparency is more likely to prevail when M is relatively small, i.e., when the

elimination process is more selective. A finalist tends to bid more when M is small, as he

expects a higher chance of winning the prize. A larger loss in an individual bid in the finale

would result if opacity were present. To see this, note that ê2 = M
N
e2 from Table 1, which

discounts e2 by M
N

: e2 strictly decreases with M , and the discount is also more severe when

M is smaller. Further, a smaller M implies less competition in the finale, which amplifies

the value for advancement, thereby boosting the first-stage effort.

Transparency is more likely to prevail when N is larger. First, a larger contest dilutes

each individual’s incentive, which implies a smaller bid in the first stage regardless of the

disclosure scheme. As a result, the loss in early effort caused by transparency, i.e., ê1 − e1,

tends to be diminished. Second, as shown above, ê2 discounts e2 by M
N

: The larger the N ,

the more severe the discount. This implies that opacity causes a larger loss of second-stage

17The observation of Me2 = Nê2 relies on the linear effort cost function. In Section 5.1.1, we allow for
a strictly convex effort cost function and show that our main findings remain qualitatively robust although
the first two effects do not perfectly cancel out, as in the baseline setting.
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effort. Both effects favor transparency in the case of a large N .

Finally, the condition of r < r† implies that transparency is more likely to prevail when

the contest is less discriminatory, i.e., with a smaller r. To understand the logic, we present

the following result.

Remark 1 Suppose that Assumption 1 is satisfied, and consider an N-M two-stage elimi-

nation contest. Then:

(i) In the symmetric subgame perfect equilibrium in pure strategies under transparency,

a finalist’s effort e2 strictly increases with r—i.e., de2
dr

> 0—while one’s stage-1 effort

e1 increases with r if and only if r is sufficiently small, i.e., de1
dr

T 0 if and only if

r S M
2(M−1)

.

(ii) In the symmetric pure-strategy equilibrium under opacity, a contestant’s efforts in both

stages strictly increase with r, i.e., dê1
dr
, dê2
dr
> 0.

Remark 1 reveals the contrasting roles played by r on contestants’ effort strategies under

transparency and opacity. Under transparency, a larger r may have opposite effects on early

and late bids: e2 always increases with r, whereas e1 decreases with it when r is large.

In contrast, under opacity, it uniformly increases both ê1 and ê2. An increase in r thus

aggravates the aforementioned tension between early and late efforts under transparency

and tends to favor opacity in the comparison.

Conventional wisdom in the contest literature predicts that equilibrium effort in contest,

increases with r. However, two competing forces emerge under transparency when r en-

larges, which gives rise to ambiguity with respect to de1
dr

, as illustrated in Remark 1(i). First,

it magnifies the marginal return of effort and strengthens contestants’ incentives. Second, a

larger r increases rent dissipation in the second stage—i.e., an increase in e2—which dimin-

ishes the value of participating in the finale and discourages contestants in the first stage

from striving to advance. The latter effect outweighs the direct effect when r is sufficiently

large, in which case the intense competition in the finale causes excessive rent dissipation,

thereby diminishing early incentive. The conflict between early and late incentives fades

away under opacity. One’s late effort, ê2, does not depend on the elimination outcome and

is complementary to ê1. As a result they both strictly increase with r, as in a static contest.

4 Optimal Disclosure Scheme with Endogenous Biases

We now allow the organizer to bias the second-stage competition by imposing identity-

dependent treatment on finalists based on their interim rankings.

12



Specifically, the organizer places different weights on contestants’ effort entries. Let

the set of N contestants be indexed by m ∈ {1, . . . , N}, which denotes their ranks in the

first-stage competition. For a given stage-2 effort profile e2 ≡ (e1
2, . . . , e

N
2 ), where em2 ,m ∈

{1, . . . , N} is the stage-2 effort of a contestant ranked in the mth place in stage 1. A

contestant wins the prize with a probability

qm (e2, δ) :=


(δme

m
2 )r∑N

j=1(δje
j
2)r
, if e2 6= (0, . . . , 0),

(δm)r∑N
j=1(δj)r

, if e2 = (0, . . . , 0),
(4)

where δm ≥ 0 is the weight assigned to a contestant based on his ranking. A contestant’s

stage-2 winning probability qm(e2, δ) depends on both the effort profile e2 ≡ (e1
2, . . . , e

N
2 ) and

the bias rule δ ≡ (δ1, . . . , δN) ∈ RN
+ \{(0, . . . , 0)}. We no longer assume outright elimination

when δ is the organizer’s choice: She may equivalently assign an excessively small weight to

a contestant, which effectively disqualifies him for the finale.18,19

The organizer commits to and publicly announces the rank-based bias rule δ ≡ (δ1, . . . , δN)

prior to the contest, together with the disclosure policy. Under transparency, the disclosure

of interim results allows all contestants to learn whether they have survived the elimination

process and how contestants will be relatively positioned in the finale if they remain in the

race. Consider the aforementioned example of track events: Lane assignment publicly re-

veals athletes’ relative positions in the finale. However, the discriminatory scheme can be

implemented less conspicuously, which corresponds to concealment. For instance, a promis-

ing grant applicant can presumably receive more advice from reviewers before revising, and

his resubmission will also be evaluated more seriously. When proposals’ rankings are kept

secret—e.g., in the Australian Research Council’s Discovery Program (see Footnote 5)—

applicants cannot precisely infer their relative standing and how their resubmission will be

processed, even though they would expect reviewers and judging panels to have developed

preferences after preliminary reviews.

The additional flexibility in contest design leads to a trade-off under transparency. On

the one hand, a biased competition upsets the balance in the finale, which reduces late effort

supply. On the other hand, a biased second-stage competition may boost early effort sup-

ply. Recall the aforementioned trade-off between early and late efforts under transparency:

18To be more specific, the baseline N -M two-stage elimination contest corresponds to δ ≡
(δ1, . . . , δM , δM+1, . . . , δN ) = (1, . . . , 1, 0, . . . , 0) in the extended setting.

19Elimination may emerge endogenously in the optimum, but is not explicitly assumed in Section 4.
Analysis of the baseline model requires N ≥ 3, while the analysis of the extended model does not exclude
the case of N = 2 when examining the optimal biases based on interim results. Our model is thus related to
the study of Meyer (1992), which analyzes this issue for N = 2 under transparency.
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A less competitive finale amplifies the continuation value of advancement, which compels

contestants to bid harder in the first stage to survive elimination. Such a trade-off, however,

is absent under opacity. Contestants remain symmetric throughout the race, as the interim

ranking is kept secret from them. An additional positive effect nevertheless looms large,

regardless of the disclosure scheme: Suppose that the organizer favors frontrunners in the

finale. This would incentivize contestants in the early stage to vie for higher ranks in order

to secure a headstart, instead of merely pursuing advancement.

In the rest of this section, we characterize the optimal contest under transparency and

opacity. We then compare the resulting performance under different disclosure schemes to

find the optimum. Again, we focus on the scenario in which a symmetric pure-strategy

equilibrium exists.20 We follow the tradition in the literature and assume a moderate dis-

criminatory parameter.

Assumption 2 r ∈ (0, 1].

The requirement of r ≤ 1 guarantees that the winning probability specified in Equa-

tion (4) is concave in a contestant’s effort for any contest bias rule δ ∈ RN
+ \ {(0, . . . , 0)}.

This assumption ensures the existence of a symmetric pure-strategy equilibrium for the case

of transparency. The case of opacity involves more complications when r is sufficiently large

due to the aforementioned complementarity between first-stage and second-stage efforts. In-

stead of imposing a more stringent upper bound on r as in Assumption 1, we assume for

simplicity that the contest organizer selects the bias rule from those that induce a symmetric

pure-strategy equilibrium.21

4.1 Optimal Bias Rule under Transparency

We first explore the optimum under transparency. It is noteworthy that a conventional

optimization approach loses its bite in our setting, because a closed-form solution to the equi-

librium in an asymmetric Tullock contest is unavailable. We adopt the indirect approach

suggested by Fu and Wu (2020) and Deng, Fu, and Wu (2021) to tackle this problem without

solving for the equilibrium explicitly. It first reformulates the contest organizer’s objective as

a function of contestants’ equilibrium winning probabilities only and treats the equilibrium

winning probability distribution as the design variable. It then solves for the equilibrium

winning probability distribution that maximizes the reformulated objective function. Fi-

nally, it obtains a bias rule that induces the desirable winning probability distribution in

equilibrium, which closes the loop.

20Under transparency, contestants can be made asymmetric in the second stage. Symmetric equilibria
require that they place the same bid in the first stage.

21We discuss in Online Appendix B the case in which the restrictions are removed and demonstrate that
our main predictions remain largely intact.
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Denote the symmetric equilibrium by 〈e1, (e
1
2, . . . , e

N
2 )〉, where e1 is contestants’ stage-1

equilibrium effort and em2 , with m ∈ {1, . . . , N}, is the stage-2 equilibrium effort of the

mth-ranked contestant under an arbitrary bias rule δ ≡ (δ1, . . . , δN). By the first-order

conditions, we can rewrite the stage-2 equilibrium effort em2 as

em2 = qm(e2, δ)×
[
1− qm(e2, δ)

]
r, for m ∈ {1, . . . , N}.

Similarly, the stage-1 equilibrium effort e1 can be derived as

e1 =
r

N
×


N∑
m=1

αm ×
[
(1− r)qm(e2, δ) + r

[
qm(e2, δ)

]2] .22

The total effort of the contest can accordingly be written as

TERT (q) ≡ Ne1 +
N∑
m=1

em2 = r ×

 N∑
m=1

{
αm
[
(1− r)qm + r(qm)2

]}
+

N∑
m=1

[
qm(1− qm)

] .
Similarly, the expected winner’s total effort is expressed as

WERT (q) ≡ e1+
N∑
m=1

[qme
m
2 ] = r×

 1

N
×

N∑
m=1

{
αm
[
(1− r)qm + r(qm)2

]}
+

N∑
m=1

[
(qm)2 (1− qm)

] .
Both TERT (q) and WERT (q) appear to be functions of the equilibrium winning probability

distribution q. We allow the organizer to choose q ≡ (q1, . . . , qN) ∈ ∆N−1 to maximize the

reformulated objective functions TERT (q) and WERT (q).

For notational convenience, define µn and κ as follows:

µn :=
(n− 2) +

∑n
m=1

αm
1−αmr∑n

m=1
1

1−αmr
, for n ∈ {2, . . . , N} (5)

and

κ := max
{
n = 2, . . . , N

∣∣ 1 + (1− r)αn > µn

}
, (6)

where αm is defined as

αm := 1−
m−1∑
g=0

1

N − g
, for m ∈ {1, . . . , N}. (7)

22The derivation of e1 and em2 can be found in the proof of Lemma 1 in Appendix B.
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The following result ensues.

Lemma 1 (Optimal Contest under Transparency) Suppose that Assumption 2 is sat-

isfied, and consider the contest design problem under transparency for N ≥ 3. Then:

(i) A unique equilibrium winning probability distribution q∗ ≡ (q∗1, . . . , q
∗
N) maximizes total

effort TERT (q). The optimum requires that q∗m = 1
2

+ 1
2
αm−µκ
1−αmr for m ≤ κ, and q∗m = 0

for m ≥ κ + 1. That is, κ contestants remain active in the optimum. Moreover, q∗

can be induced by a bias rule δ∗ ≡ (δ∗1, . . . , δ
∗
N), with δ∗m = 1

1−q∗m
(q∗m)

1−r
r for m ≤ κ and

δ∗m = 0 for m ≥ κ+ 1.

(ii) A unique equilibrium winning probability distribution q∗∗ ≡ (q∗∗1 , . . . , q
∗∗
N ) maximizes

the expected winner’s total effort WERT (q). The optimum requires that q∗∗1 = 1
2
×
[
1 +

1
N(N−1)−[2(N+ 1

N
)−5]r

]
; q∗∗2 = 1 − q∗∗1 ; and q∗∗m = 0 for m ≥ 3. That is, only the two

top-ranked contestants remain active in the finale. Moreover, q∗∗ can be induced by

a bias rule δ∗∗ ≡ (δ∗∗1 , . . . , δ
∗∗
N ), with δ∗∗m = 1

1−q∗∗m
(q∗∗m )

1−r
r for m ≤ 2 and δ∗∗m = 0 for

m ≥ 3.

Lemma 1 provides the formulae to obtain the optimal bias rules δ∗ and δ∗∗ from q∗

and q∗∗, respectively. More importantly, we can directly calculate based on q∗ and q∗∗

the resultant total effort and the expected winner’s total effort, TERT (q∗) and WERT (q∗∗),

which paves the way for further analysis.23

Ex post asymmetry always arises regardless of the prevailing design objective, in the sense

that a higher-ranked active contestant is rewarded with a strictly larger weight δ∗m or δ∗∗m . To

maximize total effort, the optimal contest eliminates N − κ bottom-ranked contestants by

placing zero weights on their effort entries and admits the rest into the finale. To maximize

the expected winner’s total effort, only two contestants are allowed to proceed to the finale

in the optimum, i.e., δ∗∗m = 0 for m ≥ 3. The logic is straightforward. This objective stresses

strong individual incentive, which demands restrictions on the size of the finale to avoid

diluting each finalist’s performance. Indeed, the organizer must strike a balance between

an individual contestant’s early incentive and his contingent effort supply in the finale: An

intense head-to-head competition in the finale could also hurt a contestant’s incentive to vie

for advancement. However, this conflict can be reconciled by creating asymmetry between

finalists, i.e., setting δ∗∗1 > δ∗∗2 to favor the top-ranked contestant in the finale. The asymme-

try achieves two goals. First, it softens the head-to-head competition in the finale to reduce

rent dissipation, in order to avoid excessive loss in the continuation value for contestants.

Second, it increases the value for the top rank, which fuels first-stage competition.

23A three-player example is presented in Online Appendix C to illustrate this reformulated optimization
problem.
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4.2 Optimal Bias Rule under Opacity

Next, we characterize the optimum under opacity. Contestants remain symmetric through-

out the game—even if they are assigned different weights in the second stage—since contes-

tants are uninformed of their status.

The analysis largely follows in the same vein as that under transparency. Let q̂ ≡
(q̂1, . . . , q̂N) be an equilibrium winning probability distribution. Define

ΓN(q̂) :=
N∑
m=1

[αmq̂m] +
N∑
m=1

[
q̂m(1− q̂m)

]
.

Let q̂∗ ≡ (q̂∗1, . . . , q̂
∗
N) be the maximizer of ΓN(q̂), subject to

∑N
m=1 q̂m = 1 and q̂m ≥ 0, for

m ∈ {1, . . . , N}, since q̂ is a probability distribution. It can be verified that

q̂∗m =

 1
κ̂

+ αm
2
−

∑κ̂
s=1 αs
2κ̂

, for m ∈ {1, . . . , κ̂},
0, for m ∈ N \ {1, . . . , κ̂},

(8)

where κ̂ is given by

κ̂ := max

{
n = 2, . . . , N

∣∣∣∣ 1

n
+
αn
2
−
∑n

s=1 αs
2n

> 0

}
. (9)

We are ready to fully characterize the optimum.

Lemma 2 (Optimal Contest under Opacity) Suppose that Assumption 2 is satisfied,

and consider the contest design problem under opacity for N ≥ 3. Let the organizer optimize

the contest over the set of bias rules that induce a symmetric pure-strategy equilibrium. Then:

(i) For r ∈ (0, 1
ΓN (q̂∗)

], there exists a symmetric pure-strategy equilibrium for any bias rule

δ̂ ∈ RN
+ \{(0, . . . , 0)}. The optimal contest simultaneously maximizes the total effort in

the overall contest and the expected winner’s total effort. In the optimum, the winning

probability of the mth-ranked contestant’s winning the prize is q̂∗m, as specified in (8),

and the optimum can be induced by a bias rule δ̂∗ = q̂∗. The maximum total effort and

maximum expected winner’s total effort are r × ΓN(q̂∗) and r
N
× ΓN(q̂∗), respectively.

(ii) For r ∈ ( 1
ΓN (q̂∗)

, 1], there exists a bias rule that induces a symmetric pure-strategy

equilibrium, leading to a maximum total effort of 1 and the maximum expected winner’s

total effort of 1
N

.

We now briefly interpret the result. When the contest is sufficiently noisy, i.e., when

r falls below 1/ΓN(q̂∗), any bias rule induces a symmetric pure-strategy equilibrium. The
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optimum can be achieved by an optimal bias rule δ̂∗ = q̂∗; each mth-ranked’s equilibrium

winning probability is given by (8). The contest eliminates N − κ̂ contestants by placing

zero weights on the effort entries of these bottom-ranked contestants after the first-stage

competition, and awards the prize to one of the κ̂ survivors.

The contest design problem is complicated, however, when r exceeds 1/ΓN(q̂∗). In this

case, q̂∗ is infeasible, as it cannot be induced in a symmetric pure-strategy equilibrium due

to violation of the first-stage participation constraint. As a result, we select the optimum

from a restricted set of candidate bias rules. Lemma 2 (ii) establishes the maximum total

effort and expected winner’s total effort that can be achieved in a symmetric pure-strategy

equilibrium. The optimum fully dissipates the rent, which implies that total effort achieves

the maximum despite the restriction. The case of maximizing the expected winner’s total

effort, however, involves additional complications. We further discuss the issue in Online

Appendix B, and show that the main prediction would not lose its bite when the restriction

is relaxed.

4.3 Transparency vs. Opacity with Endogenous Biases

We are now ready to identify the optimum.

Proposition 2 (Optimal Disclosure Scheme with Endogenous Biases) Suppose

that Assumption 2 is satisfied, and fix N ≥ 3. Let the organizer optimize the contest over

the set of bias rules that induce a symmetric pure-strategy equilibrium. Then opacity always

generates a larger amount of total effort in the contest and a smaller amount of the expected

winner’s total effort than transparency.

Proposition 2 states that the organizer prefers opacity (transparency) when she maximizes

the total effort (the expected winner’s total effort) in the contest if she can flexibly bias the

competition in favor of or against contestants. As in the baseline model, opacity dominates

transparency in maximizing total effort.

The flexibility to set the bias rule allows the contest to further boost effort supply regard-

less of the prevailing disclosure scheme. However, it does not overturn the comparison when

the organizer maximizes total effort in the contest. As stated above, under transparency, the

maximization of total effort is plagued by the fundamental trade-off between early and late

efforts. Such a tension limits the contest organizer’s ability to elicit total effort, while biases

do not serve to reconcile it. Consider, for instance, a bias rule that favors the frontrunner: It

dilutes competition in the finale, while amplifying the value of advancement and encouraging

early input. In contrast, this tension, as argued in the beginning of Section 4, is absent under

opacity.
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The ability to set the bias rule tends to favor transparency in the comparison when the

expected winner’s total effort is a concern for the contest organizer. As previously mentioned,

opacity dilutes individual incentive in the second stage. The advantage of transparency is

further strengthened when the organizer is allowed to set the bias rule. As is well known

in the literature, individual effort in a Tullock contest increases when the contest involves a

smaller number of contestants.24 The organizer can effectively restrict the size of the finale

by placing zero weights on the effort entries of early losers. As shown by Lemma 1(ii), the

optimum involves the minimum number of finalists.

Proposition 2 yields useful implications for contest design in practice. Consider, for in-

stance, bids for the Olympic games. The performance and impact of the event depend only

on the host city’s effort. Thus an elimination decision, according to our theory, should be

announced immediately to avoid diluting the actual survivors’ incentives. Similarly, consider

an architectural design competition. Only the quality of the winning design accrues to the

benefit of the organizer, which also tends to favor a more transparent organizing format. In

contrast, consider an R&D contest that intends to rally efforts to promote innovation in a

certain scientific or technological area, e.g., artificial intelligence or a vaccine for communi-

cable diseases. A more opaque contest is likely to be preferable, because it yields broader

impact for a research field.

5 Extensions

In this section, we present four extensions to our baseline model that test the robustness

of our results. Section 5.1 analyzes two variations to our model. Section 5.2 endows the

organizer with additional instruments that allow her to further manipulate the structural

elements of the contest.

5.1 Alternative Contest Models

In this part, we first relax the assumption of linear effort costs and consider convex

cost functions. We then allow the levels of discriminatory powers in the winner-selection

mechanisms to differ across the two stages, which enables us to further discern the roles

played by the parameter r.

24Ryvkin and Drugov (2020) demonstrate that this result may not hold more generally, e.g., when alter-
native contest technologies are assumed.
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5.1.1 Convex Cost Functions

The previous literature points out that the optimal contest design often depends on

the shape of contestants’ effort cost curves in dynamic contests/tournaments (e.g., Aoyagi,

2010 and Moldovanu and Sela, 2006). In this part, we relax the assumption of linear effort

cost functions and investigate the impact of the curvature of cost functions on the optimal

disclosure scheme. Specifically, we assume that one’s effort e incurs a cost e1+τ , with τ ≥ 0.

The model degenerates to the baseline setting when τ = 0. The following is obtained.

Proposition 3 (Optimal Contest with Convex Cost Functions) Suppose that As-

sumption 1 is satisfied and consider an N-M two-stage elimination contest with convex cost

functions e1+τ and τ ≥ 0. There exists a unique symmetric pure-strategy equilibrium under

both transparency and opacity. Moreover, the following statements hold:

(i) The contest generates higher total effort under opacity than it does under transparency

for all τ ≥ 0.

(ii) The expected winner’s total effort in the contest under transparency is higher than that

under opacity if τ is sufficiently large.

Our predictions are qualitatively robust in the alternative setting. Denote by
(
e1(τ), e2(τ)

)
the equilibrium effort profile under transparency, and by

(
ê1(τ), ê2(τ)

)
that under opacity.

The observation of Me2(0) = Nê2(0) in the baseline model no longer holds in the current

context. The fundamental trade-offs of e2(τ) > ê2(τ) and e1(τ) < ê1(τ), however, remain

in place despite the convex cost function. Again, we demonstrate that opacity outperforms

transparency in incentivizing total effort.

The comparison in terms of the expected winner’s total effort is more complicated. Recall

that with a linear cost function, the outcome depends on the property of the contest—

i.e., the set of parameters (N,M, r). Proposition 3 states that the comparison tends to

favor transparency when the effort cost function is sufficiently convex. When τ increases,

both the gap between e2(τ) and ê2(τ) and that between e1(τ) and ê1(τ) would diminish

asymptomatically. The former, however, converges to zero at a slower rate than the latter,

which leads to our prediction.

5.1.2 Two-stage Contests with Different Discriminatory Powers

We have assumed that the winner-selection mechanisms are equally precise across the two

stages, in the sense that the contest success functions have the same discriminatory power

term r across both stages. In reality, however, competitive environments often differ in their

dynamics. Consider, for instance, that in a succession race, candidates can be assigned

20



different tasks at different stages, and the technical nature of a task can affect the precision

of performance evaluation. Alternatively, the performance of finalists is arguably monitored

and observed more closely than in early stages. It is natural to assume that contest success

functions differ in terms of their discriminatory powers along the ladder.

Assume that the discriminatory power for the competition in stage t ∈ {1, 2} is rt > 0.

We can derive the equilibrium effort profile under each disclosure scheme.25 Our results in

Proposition 1 are largely robust to this variation in modeling.

Proposition 4 (Optimal Contest with Different Discriminatory Powers) Suppose

that max{r1, r2} ≤ r(N,M) and consider an N-M two-stage elimination contest. There

exists a unique symmetric pure-strategy equilibrium under both transparency and opacity.

Moreover, the following statements hold:

(i) The total effort of the contest under opacity is strictly higher than that under opacity

for all (r1, r2) such that max{r1, r2} ≤ r(N,M).

(ii) Transparency outperforms opacity in generating the expected winner’s total effort if and

only if r1 < r† ≡ 1
f(N,M)

.

5.2 Alternative Contest Design

In this part, we consider two extensions that expand the organizer’s design space. First,

we allow the organizer to split the prize purse among several prizes. Second, we allow

the organizer to manipulate the contest architecture, i.e., two-stage contest vis-à-vis static

contest and the possibility of a longer series of elimination.26

5.2.1 Prize Allocation

In the baseline setting, we assume that a single prize is awarded to the grand winner in the

finale. We now allow the organizer to freely divide her prize prize into several smaller prizes

that reward finalists. To put this formally, consider a two-stage sequential elimination contest

(N,M, r) and suppose that a total of M prizes are to be given away based on contestants’

ranks in the finale. The prizes are ordered in a decreasing series V1 ≥ . . . ≥ VM ≥ 0, with∑M
m=1 Vm = V ≡ 1. The model boils down to a winner-take-all competition when V2 = 0.

The optimization is nontrivial. Consider the case of transparency. Multiple prizes soften

the competition in the finale, which reduces e2. It nevertheless enlarges the payoff one would

expect from participating in stage-2 competition, which encourages contestants to step up

25See Equations (30) and (31) in Appendix B.
26We thank two anonymous referees for suggesting these extensions.
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their efforts in the preliminary to strive for advancement, i.e., enlarging e1. The overall effect

requires a closer look.

Proposition 5 (Optimality of Winner-take-all Contests) Suppose that Assumption 1

is satisfied. In the N-M two-stage elimination contest, both total effort and the expected win-

ner’s total effort are maximized in a winner-take-all contest—i.e., (V1, . . . ,VM) = (1, 0, . . . , 0)—

under either disclosure scheme, transparency or opacity.

Proposition 5 states that a winner-take-all contest prevails regardless of the design

objective—total effort or the expected winner’s total effort—and irrespective of the dis-

closure scheme, transparency or opacity. This result thus endorses Proposition 1, since the

comparison assumes a winner-take-all prize structure.

5.2.2 Contest Architecture

We have assumed a dynamic structure for the contest. It is unclear a priori whether a

sequential elimination process is necessary. In this part, we first examine whether a one-shot

contest would outperform a sequential one. We then proceed to allow the organizer to set up

the contest beyond a two-stage structure—i.e., by adding additional stages into the series.

Dynamic vs. Static Contests Note that an N -player static contest is strategically

equivalent to an N -M two-stage contest with M = 1 or N and thus can be denoted by

(N, 1, r) or (N,N, r) without introducing additional notations. The following result can be

obtained:

Proposition 6 (Dynamic versus Static Contests) Suppose that Assumption 1 is sat-

isfied. Then the following statements hold:

(i) Under transparency, a dynamic contest always generates a higher total effort and

a higher expected winner’s total effort than a static contest, i.e., TET (N,M, r) >

TET (N, 1, r) and WET (N,M, r) > WET (N, 1, r), for all M ∈ {2, . . . , N − 1}.

(ii) Under opacity, a dynamic contest always generates a higher total effort and a higher

expected winner’s total effort than a static contest, i.e., TEO(N,M, r) > TEO(N, 1, r)

and WEO(N,M, r) > WEO(N, 1, r), for all M ∈ {2, . . . , N − 1}.

Proposition 6 shows that a two-stage contest always outperforms a static one, irrespective

of the design objective or the disclosure scheme. As a result, Proposition 1 remains intact

even if the organizer is allowed to squeeze the competition into a single stage.
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Multiple Stages Proposition 6 inspires us to further explore the design of contest archi-

tecture. It is natural to conjecture that more stages would further improve the performance

of the contest if the organizer is able to choose the number of stages and/or the number of

surviving contestants in each stage. The optimal disclosure scheme deserves to be reexamined

when the contest architecture can also be chosen by the organizer.

In what follows, we consider a four-player example. A general analysis is technically

challenging and beyond the scope of this paper, which we leave for future research.27 Recall

that we denote a two-stage contest by (N,M, r). With four players and a given discriminatory

power r, a sequential-elimination contest can be constructed in one of three possible forms:

(4, 3, 2, r), (4, 3, r), or (4, 2, r). Each sequence indicates the number of surviving contestants

in every stage. The sequence (4, 3, 2, r), for example, represents a three-stage contest, with

one contestant being eliminated in each stage. The other two restore the two-stage structure,

as in our baseline model.

Table 2 summarizes the performance of the contest under different combinations of dis-

closure scheme and contest architecture. To identify the optimum for each design objective,

we only need to compare the maximum under transparency to its counterpart under opacity.

Transparency TE WE

(4, 3, 2, r) 13
864
r(2− r)(12− 5r) + 5

24
r(2− r) + 1

2
r 13

3456
r(2− r)(12− 5r) + 5

72
r(2− r) + 1

4
r

(4, 3, r) 13
108
r(3− 2r) + 2

3
r 13

432
r(3− 2r) + 2

9
r

(4, 2, r) 7
24
r(2− r) + 1

2
r 7

96
r(2− r) + 1

4
r

Opacity TE WE

(4, 3, 2, r) 23
18
r 23

72
r

(4, 3, r) 37
36
r 37

144
r

(4, 2, r) 13
12
r 13

48
r

Table 2: Total Effort and Expected Winner’s Total Effort under Different Disclosure Schemes
and Contest Architectures.

The following result naturally ensues.

Proposition 7 (Optimal Disclosure Scheme under Endogenous Contest Archi-

tecture) Suppose there are four contestants and r ≤ 18
23

. Moreover, the organizer is able to

choose the number of stages. Then the following statements hold:

(i) A three-stage elimination contest (4, 3, 2, r) generates the highest total effort and ex-

pected winner’s total effort under both transparency and opacity.

27It can be verified that the total number of dynamic contest arrangements under the two disclosure
schemes with N ≥ 3 contestants is 2N−1 − 2, which increases exponentially with N .
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(ii) Opacity generates a larger amount of total effort in the three-stage elimination contest

(4, 3, 2, r) and a smaller amount of the expected winner’s total effort than transparency.

Proposition 7(i) states that a three-stage contest—with the maximum number of stages

in a four-player setting—maximizes both total effort and the expected winner’s total effort

regardless of the prevailing disclosure scheme. Consistent with Proposition 1(i), Proposi-

tion 7(ii) predicts that opacity leads to a larger total effort. Interestingly, Proposition 7(ii)

indicates that an additional stage amplifies the advantage of transparency when maximizing

the expected winner’s total effort.

6 Concluding Remarks

In this paper, we explore the optimal disclosure scheme in elimination contests. We

demonstrate that the optimum depends on the organizer’s objective and the environmental

factors of the contest (Proposition 1). We further allow the organizer to choose the bias

rule for the finale based on contestants’ early performance. This yields a more distinct

comparison, which shows that transparency yields a higher expected winner’s total effort,

while opacity leads to a gain in total effort (Proposition 2). In addition, we show that

an asymmetric finale always emerges in the optimum regardless of the prevailing disclosure

scheme.

To the best of our knowledge, we are the first to study sequential-elimination contests

under an opaque disclosure scheme. We demonstrate that strategic interaction in the contest

differs fundamentally between different disclosure schemes, which allows wide latitude for

contest design. In addition to the theoretical contributions, our results provide a lucid

playbook for practical contest design in various scenarios.

Our paper focuses on specific instruments for contest design, primarily the choice of dis-

closure scheme; this differs from a typical mechanism design problem. As in the majority of

studies on contest design, our model mirrors the usual exercise of information management

prevalent in practice—e.g., control of the amount of information accessible to employees—

which differs across firms/organizations. A standard mechanism design approach (e.g., My-

erson, 1981) does not apply because of the organizer’s limited freedom to manipulate the

structure or the winner-selection mechanism of the contest. Our study can thus be viewed as

an exercise within a given class of mechanisms, as in Olszewski and Siegel (2020) and many

others.28

As mentioned in Footnote 10, we assume symmetry among contestants, which allows for

a tractable equilibrium analysis in a multi-prize contest environment. This setting enables

28See Polishchuk and Tonis (2013); Letina, Liu, and Netzer (2020); and Zhang (2020) for studies that
apply the mechanism design approach to optimal contest design.
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an analysis that elucidates the incentive effects of the disclosure scheme when the variance

among contestants remains relatively mild in terms of their abilities. It limits the scope of this

study, however, as it abstracts away the concern about the selection efficiency of a contest.

An analysis of selection efficiency requires a multi-prize contest model with heterogeneous

players, which imposes a tremendous technical challenge. Nevertheless, it definitely merits

future research.

Our paper assumes a complete-information multi-winner nested Tullock contest. An

alternative modeling approach is to assume an all-pay auction in which contestants’ private

valuations or marginal costs are independently and identically distributed (e.g., Moldovanu

and Sela, 2001, 2006 and Zhang and Wang, 2009). However, this setting also entails technical

complications in a two-stage structure. Finalists are able to infer their opponents’ types from

the interim outcome (their bids or rankings), which entices contestants to bid strategically

in the first stage not only to strive for advancement but also to manipulate competitors’

beliefs in their own favor. A comprehensive analysis is definitely worthwhile and should be

attempted in future studies.

Finally, in Section 5.2.2 we reexamine the optimal disclosure scheme when the organizer

is endowed with the freedom to design the contest architecture and focus on a four-player

model. A more general analysis is required to further test the limit of the prediction, which

warrants future research.
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Appendix A: Equilibrium Analysis in Baseline Model

We first consider the case under transparency.

Lemma 3 (Equilibrium under Transparency) Suppose that Assumption 1 is satisfied

and consider an N-M two-stage elimination contest under transparency. There exists a

unique symmetric subgame perfect equilibrium in pure strategies. In the equilibrium, a con-

testant chooses stage-1 effort

e1 =
r
[
M − (M − 1)r

]
NM2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

 , (10)

and stage-2 effort

e2 =
(M − 1)r

M2
, (11)

provided that he has survived the elimination.

Proof. Recall that a representative contestant’s probability of obtaining the mth rank in

the first stage when he exerts effort e′1 and all others exert effort e1 is

Pm(e′1, e1) ≡ (N − 1)!

(N −m)!
×

m−1∏
j=1

(e1)r

(N − j)(e1)r + (e′1)r

× (e′1)r

(N −m)(e1)r + (e′1)r
.

It is straightforward to verify that Pm(e1, e1) = 1/N and

∂ logPm(e′1, e1)

∂e′1
=

r

e′1
−

m∑
j=1

r(e′1)r−1

(N − j)(e1)r + (e′1)r
.

Therefore, in a symmetric equilibrium with e′1 = e1, we have that

∂Pm(e′1, e1)

∂e′1

∣∣∣∣
e′1=e1

= Pm(e1, e1)× ∂ logPm(e′1, e1)

∂e′1

∣∣∣∣
e′1=e1

=
r

Ne1

×

1−
m−1∑
g=0

1

N − g

 . (12)

The term
∂Pm(e′1,e1)

∂e′1

∣∣
e′1=e1

measures the marginal impact of a contestant’s effort on his

probability of obtaining the mth rank when he places a bid in the same amount as the

others. It is straightforward to verify that
∂Pm(e′1,e1)

∂e′1

∣∣
e′1=e1

strictly decreases with m. That is,

additional effort affords him a higher probability of obtaining a higher rank, and, equivalently,

renders him less likely to fall behind.

Next, we solve for the equilibrium effort profile (e1, e2) by backward induction.
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Stage 2 Fixing his opponents’ symmetric effort e2, let a contestant exert effort e′2 for the

following optimization problem:

max
{e′2}

(e′2)r

(e′2)r + (M − 1)(e2)r
− e′2.

By standard technique, we can solve for the symmetric equilibrium, in which each finalist

bids

e2 =
(M − 1)r

M2
.

By participating in the second-stage competition, a contestant obtains an expected equilib-

rium payoff

V ≡ 1

M
− e2 =

M − (M − 1)r

M2
, (13)

which represents the continuation value for a contestant of surviving the elimination process

in the first-stage competition.

Stage 1 Contestants compete to advance, and advancing provides an expected value V

as characterized in Equation (13). Fixing his opponents’ symmetric effort supply e1, let a

contestant choose e′1 for the following optimization problem:

max
{e′1}

 M∑
m=1

Pm(e′1, e1)

× V − e′1.
Imposing symmetry condition of e′1 = e1, we obtain the first-order condition

r

Ne1

M∑
m=1

1−
m−1∑
g=0

1

N − g

V = 1⇒ e1 =
r
[
M − (M − 1)r

]
NM2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

 ,

which uniquely determines the symmetric pure-strategy equilibrium whenever it exists.

It can be verified that V > 0 and e1 + M
N
e2 ≤ 1

N
under Assumption 1. Therefore, a repre-

sentative contestant’s participation constraints for both stages are satisfied and the derived

pure strategy indeed constitutes a symmetric pure-strategy equilibrium. This completes the

proof.

We then consider the case of opacity.

Lemma 4 (Equilibrium under Opacity) Suppose that Assumption 1 is satisfied and

consider an N-M two-stage elimination contest under opacity. Then a symmetric pure-
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strategy equilibrium exists, and in it, each contestant has a bidding strategy (ê1, ê2) with

ê1 =
r

NM
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

 , (14)

and

ê2 =
(M − 1)r

NM
. (15)

Proof. The solution can be obtained by simple algebra. To establish it as an equilibrium,

it suffices to show that a representative contestant’s participation constraint is satisfied, i.e.,

ê1+ê2 ≤ 1
N

. Carrying out the algebra, this inequality is equivalent to r ≤ M
(M−1)+(N−M)f(N,M)

.

This concludes the proof.
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Appendix B: Proofs

Proof of Proposition 1

Proof. It follows from Table 1 that the two-stage elimination contest under transparency

yields a total equilibrium effort

TET (N,M, r) = Ne1 +Me2 =
r
[
M − (M − 1)r

]
M2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M
,

(16)

and an expected winner’s total effort

WET (N,M, r) = e1 + e2 =
r
[
M − (M − 1)r

]
NM2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M2
. (17)

Similarly, the contest under opacity generates a total effort

TEO(N,M, r) = Nê1 +Nê2 =
r

M

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M
, (18)

and an expected winner’s total effort

WEO(N,M, r) = ê1 + ê2 =
r

NM

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

NM
. (19)

The comparison of total effort and the expected winner’s total effort between trans-

parency and opacity is straightforward for N = 3, and it remains to analyze the case where

N ≥ 4. It follows from Equations (16) and (18) that

TEO(N,M, r)− TET (N,M, r)

=

[
r

M
−
r
[
M − (M − 1)r

]
M2

]
×

M∑
m=1

1−
m−1∑
g=0

1

N − g


=

(M − 1)r2

M2
×

M − M−1∑
g=0

M − g
N − g


=

(N −M)(M − 1)r2

M2
×

M−1∑
g=0

1

N − g
> 0.
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Therefore, opacity always generates more total effort than does transparency. Next, it follows

from Equations (17) and (19) that

WEO(N,M, r)−WET (N,M, r)

=

[
r

NM
−
r
[
M − (M − 1)r

]
NM2

]
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

+

[
(M − 1)r

NM
− (M − 1)r

M2

]

=
(N −M)(M − 1)r2

NM2
×

M−1∑
g=0

1

N − g
− (N −M)(M − 1)r

NM2

=
(N −M)(M − 1)r2

NM2
×

M−1∑
g=0

1

N − g
− 1

r


≡ (N −M)(M − 1)r2

NM2
×
[
f(N,M)− 1

r

]
.

Therefore, WEO(N,M, r) ≷ WET (N,M, r) is equivalent to r ≷ 1
f(N,M)

≡ r†. Next, we show

that there exists a cutoff M † such that r(N,M) ≤ r† for M ≤ M † and r(N,M) > r† for

M > M †. It can be verified that r(N,M) ≤ r† is equivalent to

(2M −N)f(N,M) ≤M − 1.

Clearly, the above inequality holds for M ≤ bN
2
c. For M ≥ bN

2
c+ 1, the above inequality is

equivalent to

f(N,M) ≤ M − 1

2M −N
.

Note that the left-hand side strictly increases with M while the right-hand side strictly

decreases with M . Moreover, we have that

f (N,N − 1) =
1

2
+

1

3
+ . . .+

1

N
≥ 1

2
+

1

3
+

1

4
=

13

12
> 1 =

N − 2

2(N − 1)−N
,

where the first inequality follows from the postulated N ≥ 4. Therefore, there exists a cutoff

M † such that r(N,M) ≤ r† for M ≤ M † and r(N,M) > r† for M > M †. This completes

the proof.

Proof of Remark 1

Proof. Under transparency, it follows instantly from Equation (11) that de2
dr

= M−1
M2 > 0.
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Moreover, Equation (10) implies that

de1

dr
=
M − 2(M − 1)r

NM2
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

 .

Therefore, de1
dr
> 0 is equivalent to r < M

2(M−1)
.

Under opacity, it follows from Equations (14) and (15) that

dê1

dr
=

1

NM

M∑
m=1

1−
m−1∑
g=0

1

N − g

 > 0,

and
dê2

dr
=
M − 1

NM
> 0.

This concludes the proof.

Proof of Lemma 1

Proof. It is useful to state several intermediary results. The following lemma constructs a

potential bias rule that would induce an arbitrary set of equilibrium winning probabilities

q ≡ (q1, . . . , qN) ∈ ∆N−1 under transparency.

Lemma 5 An equilibrium winning probability distribution q ≡ (q1, . . . , qN) can be induced

by a bias rule

δm =

 1
1−qm (qm)

1−r
r , if qm > 0,

0, if qm = 0.

Proof. In stage 2, the mth-ranked contestant chooses effort em2 for the maximization prob-

lem:

max
{em2 }

qm(e2, δ)− em2 .

With simple algebraic transformation, the first-order condition with respect to em2 for an

interior solution can be written as

r

em2
× qm(e2, δ)×

[
1− qm(e2, δ)

]
= 1, for m ∈ {1, . . . , N},

which allows us to rewrite the stage-2 equilibrium effort as follows:

em2 = qm(e2, δ)×
[
1− qm(e2, δ)

]
r, for m ∈ {1, . . . , N}. (20)
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Note that Equation (20) also holds for a corner solution with em2 = 0, because qm = 0 in this

instance.

Clearly, for qm = 0, the contest organizer can simply exclude the contestant by setting

δm = 0. For qi > 0 and qj > 0, it follows from Equations (4) and (20) that(
δi
δj

)r

=

(
qi
qj

)1−r

×

(
1− qi
1− qj

)−r
⇒ δi

δj
=

1
1−qi (qi)

1−r
r

1
1−qj

(
qj
) 1−r

r

.

Therefore, one potential bias rule δ ≡ (δ1, . . . , δN) that induces the winning probabilities

q ≡ (q1, . . . , qN) is

δm =

 1
1−qm (qm)

1−r
r , if qm > 0,

0, if qm = 0.

This completes the proof.

The next lemma characterizes the optimal equilibrium winning probability distribution

q∗ ≡ (q∗1, . . . , q
∗
N) that maximizes total effort under transparency.

Lemma 6 Fix N ≥ 3 and r ∈ (0, 1]. Suppose that the contest organizer maximizes the total

effort in the contest. Then

q∗m =

{
1
2

+ 1
2
αm−µκ
1−αmr , if m ∈ {1, . . . , κ},

0, if m ∈ N \ {1, . . . , κ},
(21)

where µκ is defined by (5) and (6).

Proof. By Equation (20), the continuation value for obtaining the mth rank, denoted by

Vm, can then be written as

Vm = qm(e2, δ)− em2 =
[
1− (1− qm)r

]
× qm. (22)

Fixing V ≡ (V1, . . . , VN) and other contestants’ effort e1, a representative contestant in the

first stage chooses e′1 for the maximization problem:

max
{e′1}

 N∑
m=1

Pm(e′1, e1)× Vm

− e′1.
The first-order condition, together with the symmetry condition e′1 = e1 and Equation (12),
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gives

e1 =
r

N
×

N∑
m=1


1−

m−1∑
g=0

1

N − g

× Vm
 ≡ r

N
×

N∑
m=1

[αmVm] , (23)

where αm < 1 is defined in (7). Combining (20), (22), and (23), we can express the total

effort in the contest, which we denote by TERT , as a function of q ≡ (q1, . . . , qN):

TERT (q) ≡ Ne1 +
N∑
m=1

em2

= r ×

 N∑
m=1

{
αm
[
(1− r)qm + r(qm)2

]}
+

N∑
m=1

[
qm(1− qm)

] . (24)

By Lemma 5, an arbitrary set of equilibrium winning probabilities q ≡ (q1, . . . , qN)

can be induced by some contest rule δ ≡ (δ1, . . . , δN). Therefore, the contest organizer’s

optimization problem can be reformulated as the following: She chooses the equilibrium

winning probability distribution q to maximize TERT (q) in expression (24), subject to the

plausibility constraint
N∑
m=1

qm = 1, (25)

and the non-negativity constraints

qm ≥ 0, for m ∈ {1, . . . , N}. (26)

Further, the usual participation constraint must be satisfied. The following lemma can be

established:

Lemma 7 Suppose that i, j ∈ N and i < j. Then q∗i ≥ q∗j .

Proof. Suppose to the contrary that q∗i < q∗j . Consider an alternative vector of the equilib-

rium winning probabilities, denoted by q̃∗ ≡ (q̃∗1, . . . , q̃
∗
N), as follows:

q̃∗m =


q∗i , if m = j,

q∗j , if m = i,

q∗m, if m ∈ N \ {i, j}.

Next, we show that q̃∗ generates higher total effort than does q∗. It follows from Equa-
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tion (24) that

TERT (q∗)− TERT (q̃∗)

r
=

N∑
m=1

{
αm
[
(1− r)q∗m + r(q∗m)2

]}
−

N∑
m=1

{
αm
[
(1− r)q̃∗m + r(q̃∗m)2

]}
= (αi − αj)×

[
(1− r) + r

(
q∗i + q∗j

)]
×
(
q∗i − q∗j

)
< 0,

where the strict inequality follows from αi > αj, (q∗i , q
∗
j ) ≥ (0, 0) and the postulated q∗i < q∗j .

Therefore, we have that TERT (q∗) < TERT (q̃∗), which is a contradiction to the definition

of q∗. This completes the proof.

We are now ready to characterize the effort-maximizing equilibrium winning probability

distribution q∗. Consider the following sequence of auxiliary problems (Pn): for each n =

2, . . . , N , the contest organizer maximizes TERT (q) in (24) by ignoring the non-negativity

constraint qm ≥ 0 for m ∈ {1, . . . , n} and setting qm = 0 for m ∈ N \ {1, . . . , n}. By

Lemma 7, the optimal solution to the original maximization problem must be one of the

solutions to the N − 1 auxiliary maximization problems.

It can further be verified that the solution to the auxiliary problem (Pn), which we denote

by q̌n ≡ (q̌n1 , . . . , q̌
n
N), is

q̌nm =

{
1
2

+ 1
2
αm−µn
1−αmr , if m ∈ {1, . . . , n},

0, if m ∈ N \ {1, . . . , n},

where µn is defined in (5) in the main text. It can also be verified that q̌n1 > . . . > q̌nn. If

q̌nn > 0, then q̌n ≡ (q̌n1 , . . . , q̌
n
N) is a potential maximizer to the original optimization problem.

Define

κ := max
{
n = 2, . . . , N | q̌nn > 0

}
≡ max

{
n = 2, . . . , N | 1 + (1− r)αn > µn

}
.

Note that q̌2
2 > 0 and thus the set

{
n = 2, . . . , N | q̌nn > 0

}
is finite and nonempty. Therefore,

κ is well-defined and unique. For the auxiliary problem that maximizes TERT (q), the maxi-

mal value of the objective function increases with n because more equality constraints—i.e.,

qm = 0 for m ∈ N \{1, . . . , n}—are dropped when n increases. This implies that the solution

to the auxiliary problem (Pκ) is also the solution to the original maximization problem of

the contest organizer. This completes the proof.

Denote the equilibrium stage-2 winning probabilities that maximize the expected winner’s

total effort under transparency by q∗∗ ≡ (q∗∗1 , . . . , q
∗∗
N ). We further obtain the following

lemma.
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Lemma 8 Fix N ≥ 3 and r ∈ (0, 1]. Suppose that the organizer aims to maximize the

expected winner’s total effort. Then the optimum requires q∗∗1 = 1
2
×
[
1+ 1

N(N−1)−[2(N+ 1
N

)−5]r

]
,

q∗∗2 = 1− q∗∗1 , and q∗∗m = 0 for m ≥ 3.

Proof. Combining (20), (22), and (23), the expected winner’s total effort under trans-

parency, denoted by WERT , can be expressed with respect to q ≡ (q1, . . . , qN) as follows:

WERT (q) ≡ e1 +
N∑
m=1

[qme
m
2 ]

= r ×

 1

N
×

N∑
m=1

{
αm
[
(1− r)qm + r(qm)2

]}
+

N∑
m=1

[
(qm)2 (1− qm)

] . (27)

The contest organizer chooses the equilibrium winning probabilities q to maximizeWERT (q),

subject to the plausibility constraint (25) and the non-negativity constraints (26).

Lemma 9 Suppose that i, j ∈ N and i < j. Then q∗∗i ≥ q∗∗j .

Proof. The proof is similar to that of Lemma 7, and is omitted for brevity.

Lemma 10 q∗∗1 > 0, q∗∗2 > 0 and q∗∗m = 0 for m ≥ 3.

Proof. It is evident that at least two contestants are active in the second stage and it

suffices to rule out the possibility that (q∗∗1 , q
∗∗
2 , q

∗∗
3 ) > (0, 0, 0) by Lemma 9. Suppose that

(q∗∗1 , q
∗∗
2 , q

∗∗
3 ) > (0, 0, 0). Fix aij := q∗∗i + q∗∗j ∈ (0, 1]. Consider the following function φij(x)

with domain x ∈ [0, aij].

φij(x) :=
αi
[
(1− r)x+ rx2

]
+ αj

[
(1− r)(aij − x) + r(aij − x)2

]
N

+
[
x2(1− x) + (aij − x)2(1− aij + x)

]
,

where i, j ∈ {1, 2, 3} and i 6= j. It is straightforward to verify that φij(x) is quadratic

in x. For (q∗∗1 , q
∗∗
2 , q

∗∗
3 ) > (0, 0, 0), we must have that arg maxx∈[0,aij ] φij(x) ∈ (0, aij) for

i, j ∈ {1, 2, 3} and i 6= j, which requires φij(x) to be strictly concave in x. It can be verified

that φ′′ij(x) < 0 is equivalent to

3
(
q∗∗i + q∗∗j

)
≡ 3aij > 2 +

r

N

(
αi + αj

)
.

Therefore, we must have that

q∗∗1 +q∗∗2 +q∗∗3 ≡
a12 + a13 + a23

2
> 1+

r

6N

3∑
i=1

αi = 1+
r

6N

(
3− 3

N
− 2

N − 1
− 1

N − 2

)
≥ 1,
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where the last inequality follows from the postulated N ≥ 3. Note that the above inequality

contradicts q∗∗1 + q∗∗2 + q∗∗3 ≤
∑N

m=1 q
∗∗
m = 1. This completes the proof.

We can now prove Lemma 8. By Lemma 10 and Equation (27), the contest organizer’s

optimization problem can be simplified as follows: She chooses q1 ∈ [0, 1] to maximize

max
{q1}

{
1

N

(
1− 1

N

)[
(1− r)q1 + r(q1)2

]
+

1

N

(
1− 1

N
− 1

N − 1

)[
(1− r)(1− q1) + r(1− q1)2

]
+ (1− q1)q1

}
r.

Note that the above expression is quadratic in q1 and it is straightforward to verify that

q∗∗1 =
1

2
×
N +

[
1

N−1
−
(

2− 2
N
− 1

N−1

)
r

]
N −

(
2− 2

N
− 1

N−1

)
r

=
1

2
×

1 +
1

N(N − 1)−
[
2
(
N + 1

N

)
− 5
]
r

 .
This completes the proof.

Part (i) of Lemma 1 follows immediately from Lemmata 5 and 6. Part (ii) follows

immediately from Lemmata 5 and 8. This concludes the proof.

Proof of Lemma 2

Proof. The analysis is largely similar to that under transparency. We focus on the set of

bias rules under which a symmetric pure-strategy equilibrium exists. Consider an arbitrary

contestant’s strategic problem by choosing his effort (ê′1, ê
′
2) when other contestants have the

same effort pair (ê1, ê2). With slight abuse of notation, denote by q̂m(ê′2, ê2; δ) a contestant’s

probability of winning the prize with a bias rule δ ≡ (δ1, . . . , δN) in place, given that he is

ranked in mth place after the first-stage competition. Recall that Pm(ê′1, ê1) is the probability

of a contestant’s being ranked in mth place. A representative contestant solves the following

maximization problem:

max
{ê′1,ê′2}

N∑
m=1

[
Pm(ê′1, ê1)× q̂m(ê′2, ê2; δ)

]
− ê′1 − ê′2,

where Pm(ê′1, ê1)× q̂m(ê′2, ê2; δ) is his probability of being ranked in mth place while winning

the prize in the end. The sum
∑N

m=1

[
Pm(ê′1, ê1)× q̂m(ê′2, ê2; δ)

]
is thus his overall probability

of winning the contest. Anticipating a symmetric equilibrium, the organizer chooses q̂ ≡
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(q̂1, . . . , q̂N) to maximize the total effort, denoted by TERO(q̂), in the contest

TERO(q̂) ≡ Nê1 +Nê2 = r ×


N∑
m=1

[αmq̂m] +
N∑
m=1

[
q̂m(1− q̂m)

] =: rΓN(q̂), (28)

or the expected winner’s total effort, denoted by WERO(q̂),

WERO(q̂) ≡ ê1 + ê2 =
r

N
ΓN(q̂), (29)

subject to constraints (25) and (26), as well as to the usual participation constraint.

To proceed, we consider the relaxed optimization problem that maximizes ΓN(·) subject

to constraints (25) and (26), i.e., without considering the participation constraint. Simple

algebra can verify that the relaxed optimization problem has the following maximizer:

q̂∗m =

 1
κ̂

+ αm
2
−

∑κ̂
s=1 αs
2κ̂

, if m ∈ {1, . . . , κ̂},
0, if m ∈ N \ {1, . . . , κ̂},

where κ̂ is defined as

κ̂ := max

{
n = 2, . . . , N

∣∣∣∣ 1

n
+
αn
2
−
∑n

s=1 αs
2n

> 0

}
.

We consider the following two cases:

Case I: r ≤ 1
ΓN (q̂∗)

. Clearly, a contestant’s participation constraint is satisfied for the

contest bias rule q̂∗, and thus q̂∗ is the optimal equilibrium winning probability distribution.

Moreover, it can be verified that q̂∗ can be induced by a bias rule δ̂∗ = q̂∗.

Case II: r > 1
ΓN (q̂∗)

. First, note that the total effort in any symmetric pure-strategy

equilibrium does not exceed the value of the prize V = 1; and thus the expected winner’s

total effort in any symmetric pure-strategy equilibrium does not exceed 1
N

. Therefore, if there

exists a contest rule that yields a symmetric pure-strategy equilibrium that fully dissipates

the rent, it must be optimal to the contest organizer.

Second, note that ΓN(·) is continuous in all arguments. Moreover, we have that

ΓN(1, 0, . . . , 0) = α1 = 1− 1

N
< 1 ≤ 1

r
, and ΓN(q̂∗) >

1

r
.

Therefore, there must exist an equilibrium winning probability distribution q̀ = (q̀1, . . . , q̀N)
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such that

ΓN(q̀) =
1

r
.

Clearly, the total effort in the contest under the constructed bias rule q̀ is 1 and the rent is

fully dissipated. Moreover, the contest rule where δm = q̀m for all m ∈ {1, . . . , N} leads to

the desirable equilibrium winning probability distribution q̀. This completes the proof.

Proof of Proposition 2

Proof. We first prove the result for total effort. The comparison between opacity and

transparency is obvious for r > 1
ΓN (q̂∗)

, and it remains to consider the case where r ≤
1

ΓN (q̂∗)
. Recall that the optimal winning probability distribution under transparency is q∗ ≡

(q∗1, . . . , q
∗
N) as defined in (21). It follows from Equations (24) and (28) that

TERO(q∗)− TERT (q∗) = r ×

 N∑
m=1

[αmq
∗
m] +

N∑
m=1

[
q∗m(1− q∗m)

]
− r ×

 N∑
m=1

αm
[
(1− r)q∗m + r(q∗m)2

]
+

N∑
m=1

[
q∗m(1− q∗m)

]
= r2 ×

 N∑
m=1

αmq
∗
m(1− q∗m)

 ,
and hence it remains to show that

∑N
m=1 αmq

∗
m(1− q∗m) > 0. Note that

N∑
m=1

αm =
N∑
m=1

1−
m−1∑
g=0

1

N − g

 = N −
N−1∑
g=0

N − g
N − g

= 0.

Together with the fact that α1 > . . . > αN , there exists a cutoff 3 ≤ m ≤ N − 1 such that

αm ≥ 0 for m < m and αm < 0 otherwise. Let q be the corresponding q that maximizes

q∗m(1 − q∗m) for m ≥ m. It follows from Lemma 7 that q∗m ≥ q for m < m. Therefore, we
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have that

N∑
m=1

[
αmq

∗
m(1− q∗m)

]
=

m−1∑
m=1

[
αmq

∗
m(1− q∗m)

]
+

N∑
m=m

[
αmq

∗
m(1− q∗m)

]
≥

m−1∑
m=1

[
αmq

∗
m(1− q∗m)

]
+

N∑
m=m

[
αmq(1− q)

]
=

m−1∑
m=1

[
αmq

∗
m(1− q∗m)

]
− q(1− q)

m−1∑
m=1

αm

=
m−1∑
m=1

[
αm (q∗m − q) (1− q∗m − q)

]
≥ α1 (q∗1 − q) (1− q∗1 − q) > 0,

where the first inequality follows from αm < 0 and q(1 − q) ≥ q∗m(1 − q∗m) for m ≥ m; the

second equality follows from
∑N

m=1 αm = 0; the second inequality follows from αm ≥ 0,

q∗m ≥ q and 1− q∗m− q ≥ 0 for 2 ≤ m ≤ m− 1; and the last strict inequality follows from the

fact that α1 = 1 − 1
N
> 0, q∗1 > q∗2 ≥ q and q∗1 + q ≤ 1 − q∗2 < 1. Therefore, opacity always

generates higher total effort than transparency.

Next, we show that transparency generates a greater expected winner’s total effort than

does opacity. We consider the following two cases.

Case I: N = 3. By Lemma 8, the optimal equilibrium winning probability distribution

under transparency is (q∗1, q
∗
2, q
∗
3) =

(
21−5r
36−10r

, 15−5r
36−10r

, 0
)

. Similarly, the optimal equilibrium

winning probability distribution under opacity is (q̂∗1, q̂
∗
2, q̂
∗
3) =

(
5
8
, 3

8
, 0
)

from the proof of

Lemma 2. Carrying out the algebra, we see that the difference between the maximum

expected winner’s total effort under transparency and that under opacity is

WERT (q∗1, q
∗
2, q
∗
3)−WERO (q̂∗1, q̂

∗
2, q̂
∗
3) =

r(6− 5r)(69− 20r)

288(18− 5r)
,

which is strictly positive for all r ∈ (0, 1].
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Case II:N ≥ 4. From a contestant’s participation constraint, we can obtain thatWERO(q) ≤
1
N

. Together with Equation (29), we have that

WERO(q̂) ≤ min

 1

N
,
r

N
×


N∑
m=1

[αmq̂m] +
N∑
m=1

[
q̂m(1− q̂m)

]


≤ r

N
×


N∑
m=1

[
max {αm, α2} q̂m

]
+

N∑
m=1

[
q̂m(1− q̂m)

]
=

r

N
×

α1q̂1 + α2

N∑
m=2

q̂m +
N∑
m=1

[
q̂m(1− q̂m)

] =: WE†max(q̂),

where the second inequality follows from α1 > . . . > αN and q̂m ≥ 0 for all m ∈ {1, . . . , N}.
Therefore, we have that

WERO(q̂∗) ≤ max

WE†max(q̂)

∣∣∣∣ N∑
m=1

q̂m = 1, q̂m ≥ 0,m ∈ {1, . . . , N}

 .

It can be verified that the solution to the maximization problem on the right-hand side of

the above inequality, denoted by q† ≡ (q†1, . . . , q
†
N), is

q†1 =
1

N
+
N − 1

N
× α1 − α2

2
=

3

2N
, and q†2 = . . . = q†N =

1− q†1
N − 1

=
2N − 3

2N(N − 1)
.

Therefore, the expected winner’s total effort under opacity can be bounded above by

WERO(q̂∗) ≤ WE†max(q
†
1, . . . , q

†
N) =

8N2 − 20N + 13

4N2(N − 1)
r.

Next, it follows from Equation (27) that the maximum expected winner’s total effort under

transparency can be bounded below by

WERT (q∗) ≥ WERT

(
1

2
,
1

2
, 0, . . . , 0

)
= r

[
α2

N
+

1

2N(N − 1)
+
N − (α1 + α2)r

4N

]
≥ r

[
α2

N
+

1

2N(N − 1)
+
N − (α1 + α2)

4N

]
=
N3 +N2 − 5N + 2

4N2(N − 1)
r,
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where the second inequality follows from r ≤ 1. Therefore, it suffices to show that

N3 +N2 − 5N + 2

4N2(N − 1)
r >

8N2 − 20N + 13

4N2(N − 1)
r,

which is equivalent to

N3 − 7N2 + 15N − 11 > 0.

It is straightforward to verify that the above strict inequality holds for N ≥ 4. This completes

the proof.

Proof of Proposition 3

Proof. It can be verified that the equilibrium effort profile under transparency, denoted by(
e1(τ), e2(τ)

)
, is

e1(τ) =

 1

1 + τ
× r

N
×
[

1

M
− 1

1 + τ
× (M − 1)r

M2

]
×

M∑
m=1

1−
m−1∑
g=0

1

N − g


1

1+τ

,

and

e2(τ) =

[
1

1 + τ
× (M − 1)r

M2

] 1
1+τ

.

Similarly, the equilibrium effort profile under opacity, denoted by
(
ê1(τ), ê2(τ)

)
, is given by

ê1(τ) =

 1

1 + τ
× r

NM

M∑
m=1

1−
m−1∑
g=0

1

N − g




1
1+τ

,

and

ê2(τ) =

[
1

1 + τ
× (M − 1)r

NM

] 1
1+τ

.

Carrying out the algebra, we have that

N
[
e1(τ)

]1+τ
+M

[
e2(τ)

]1+τ ≤ N
[
ê1(τ)

]1+τ
+N

[
ê2(τ)

]1+τ

=
1

1 + τ
×

 r

M
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M


≤ r

M
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M
≤ 1,
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where the second inequality follows from τ ≥ 0, and the third inequality follows from As-

sumption 1. Therefore, the participation constraints are satisfied under both transparency

and opacity, and thus the existence and the uniqueness of pure-strategy equilibria are guar-

anteed for both disclosure schemes.

Part (i) of the proposition follows instantly from the facts that Me2(τ) < Nê2(τ) and

e1(τ) < ê1(τ); and it remains to prove part (ii), which is equivalent to showing that

G(τ) :=

 r

NM

M∑
m=1

1−
m−1∑
g=0

1

N − g




1
1+τ

−

 r

N
×
[

1

M
− 1

1 + τ
× (M − 1)r

M2

]
×

M∑
m=1

1−
m−1∑
g=0

1

N − g


1

1+τ

<

[
(M − 1)r

M2

] 1
1+τ

−
[

(M − 1)r

NM

] 1
1+τ

=: H(τ), for sufficiently large τ.

Note that G(τ) > 0 and H(τ) > 0 for all τ ≥ 0; and limτ→∞ G(τ) = limτ→∞H(τ) = 0.

Moreover, it can be verified that

H′(τ) = − 1

(1 + τ)2
×

log

[
(M − 1)r

M2

]
×
[

(M − 1)r

M2

] 1
1+τ

− log

[
(M − 1)r

NM

]
×
[

(M − 1)r

NM

] 1
1+τ

 ,

and

G′(τ) =− 1

(1 + τ)2
×
(

∆

M

) 1
1+τ

× log

(
∆

M

)

− 1

(1 + τ)2
×

{
∆×

[
1

M
− 1

1 + τ
× (M − 1)r

M2

]} 1
1+τ

× log

{
∆×

[
1

M
− 1

1 + τ
× (M − 1)r

M2

]}

+
1

(1 + τ)3
×

{
∆×

[
1

M
− 1

1 + τ
× (M − 1)r

M2

]} 1
1+τ

×
(M−1)r
M2

1
M −

1
1+τ ×

(M−1)r
M2

,

where ∆ := r
N

∑M
m=1

(
1−

∑m−1
g=0

1
N−g

)
. Applying L’Hospital’s Rule, we obtain

lim
τ→∞

G(τ)

H(τ)
= lim

τ→∞

G ′(τ)

H′(τ)
=

log
(

∆
M

)
− log

(
∆
M

)
log
[

(M−1)r
M2

]
− log

[
(M−1)r
NM

] = 0.

Therefore, G(τ)
H(τ)

< 1, or equivalently, G(τ) < H(τ), when τ is sufficiently large. This com-

pletes the proof.
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Proof of Proposition 4

Proof. Simple algebra would verify that the equilibrium effort profile under transparency,

denoted by
(
e1(r1, r2), e2(r1, r2)

)
, is

e1(r1, r2) =
r1

[
M − (M − 1)r2

]
NM2

M∑
m=1

1−
m−1∑
g=0

1

N − g

 , and e2(r1, r2) =
(M − 1)r2

M2
. (30)

From the above expression, as r2 increases, stage-1 effort decreases and stage-2 effort in-

creases. In contrast, r1 has no impact on stage-2 effort. Similarly, the equilibrium effort

profile under opacity, denoted by
(
ê1(r1, r2), ê2(r1, r2)

)
, can be derived as the following:

ê1(r1, r2) =
r1

NM

M∑
m=1

1−
m−1∑
g=0

1

N − g

 , and ê2(r1, r2) =
(M − 1)r2

NM
. (31)

Proposition 4 follows immediately from comparing the resulting total effort and the expected

winner’s total effort under transparency and opacity, and is omitted for brevity.

Proof of Proposition 5

Proof. Fix an arbitrary prize allocation profile V := (V1, . . . ,VM), with V1 ≥ . . . ≥ VM ≥ 0

and
∑M

m=1 Vm = 1. By standard technique, the equilibrium period-2 effort under trans-

parency, which we denote by e2(V) with slight abuse of notation, can be derived as

e2(V) =
r

M
×

M∑
j=1

[
βjVj

]
,

where βj < 1 is defined as

βj := 1−
j−1∑
g=0

1

M − g
, for j ∈ {1, . . . ,M}.

The equilibrium period-1 effort, denoted by e1(V), is given by

e1(V) =
r

N
×

 M∑
m=1

αm

× [ 1

M
− e2(V)

]
,
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where αm < 1 is defined in (7). Therefore, the total effort amounts to

Ne1(V) +Me2(V) =
r

M
×

 M∑
m=1

αm

 +

 M∑
m=1

(1− αmr)

× e2(V).

It is straightforward to verify that
∑M

m=1 (1− αmr) > 0 under Assumption 1 and that

e2(V) is maximized at V = (1, 0, . . . , 0). Therefore, the total effort is maximized by setting

V = (1, 0, . . . , 0). Similarly, we can show that the expected winner’s total effort is also

maximized by setting V = (1, 0, . . . , 0).

The analysis under opacity is similar. Again, by standard technique, a player’s effort

profile in a symmetric equilibrium under opacity, which we denote by
(
ê1(V), ê2(V)

)
, is

ê1(V) =
r

NM

M∑
m=1

αm,

and

ê2(V) =
r

N
×

M∑
j=1

[
βjVj

]
.

It is evident that ê1(V) is independent of the period-2 prize structure V ≡ (V1, . . . ,VM).

Moreover, the fact that β1 > . . . > βM implies immediately that ê2(V) is maximized by

setting V = (1, 0, . . . , 0). This concludes the proof.

Proof of Proposition 6

Proof. The proof is straightforward for N = 3, and it remains to analyze the case where

N ≥ 4. It can be verified that r̄(N,M) ≤ 1 for N ≥ 4. We first show that TET (N,M, r) >

TET (N, 1, r). Note that

M∑
m=1

1−
m−1∑
g=0

1

N − g

 = (N −M)

M−1∑
g=0

1

N − g

 > (N −M)× M

N
. (32)
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Together with Equation (16), we have that

TET (N,M, r) =
r
[
M − (M − 1)r

]
M2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M

≥ r

M2
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M

>
r

M2
× (N −M)× M

N
+

(M − 1)r

M

=
(N − 1)r

N
= TET (N, 1, r),

where the first inequality follows from r ≤ r̄(N,M) ≤ 1 and the second inequality follows

from (32).

Similarly, by Equation (17), we can obtain that

WET (N,M, r) =
r
[
M − (M − 1)r

]
NM2

×
M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M2

>
r

NM2
× (N −M)× M

N
+

(M − 1)r

M2

>
(N − 1)r

N2
= WET (N, 1, r),

where the first inequality follows from r ≤ r̄(N,M) ≤ 1 and (32), and the second inequality

follows from the fact that (M − 1)/M2 > (N − 1)/N2 for N > M ≥ 2.

Further, by Equation (18), we can obtain that

TEO(N,M, r) =
r

M

M∑
m=1

1−
m−1∑
g=0

1

N − g

+
(M − 1)r

M

>(N −M)× r

N
+

(M − 1)r

M

>
(N − 1)r

N
= TEO(N, 1, r),

where the first inequality follows again from (32) and the second inequality follows from

N > M . Last, note that WEO(N,M, r) = TEO(N,M, r)/N for all M ∈ {1, . . . , N}.
Together with the above inequality, we have that WEO(N,M, r) > WEO(N, 1, r). This

concludes the proof.

Proof of Proposition 7
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Proof. Standard technique yields the following:

(i) Under transparency, in the symmetric pure-strategy equilibrium, a contestant chooses

stage-1 effort e1 = 13
3456

r(2 − r)(12 − 5r), stage-2 effort e2 = 5
72
r(2 − r), and stage-3

effort e3 = 1
4
r, provided that he has survived the elimination.

(ii) Under opacity, in the symmetric pure-strategy equilibrium, a contestant chooses stage-

1 effort ê1 = 13
144
r, stage-2 effort ê2 = 5

48
r, and stage-3 effort ê3 = 1

8
r.

Therefore, the total effort under transparency, denoted by TET (4, 3, 2, r) amounts to

TET (4, 3, 2, r) = 4e1 + 3e2 + 2e3 =
13

864
r(2− r)(12− 5r) +

5

24
r(2− r) +

1

2
r,

and the expected winner’s total effort under transparency, denoted by WET (4, 3, 2, r), is

WET (4, 3, 2, r) = e1 + e2 + e3 =
13

3456
r(2− r)(12− 5r) +

5

72
r(2− r) +

1

4
r.

Similarly, the total effort under opacity, denoted by TEO(4, 3, 2, r), amounts to

TEO(4, 3, 2, r) = 4ê1 + 4ê2 + 4ê3 =
23

18
r,

and the expected winner’s total effort under opacity, denoted by WEO(4, 3, 2, r), is

WEO(4, 3, 2, r) = ê1 + ê2 + ê3 =
23

72
r.

It is straightforward to verify that a representative contestant’s participation constraints

under transparency and opacity are satisfied for r ≤ 18
23

. Moreover, simple algebra would

verify that a three-stage elimination contest (4, 3, 2, r) generates the highest total effort

and expected winner’s total effort under both transparency and opacity for r ≤ 18
23

. This

concludes the proof.
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Disclosure and Favoritism in Sequential Elimination

Contests

ONLINE APPENDIX

Qiang Fu∗ Zenan Wu†

In this online appendix we collect the materials omitted from the main text of the paper.1

The appendices are ordered according to where they are first referenced in the main text.

Online Appendix A allows the contest organizer to randomize between full disclosure and

no disclosure, and shows that partial disclosure is suboptimal. Therefore, it is without loss

of generality to focus on the comparison between full disclosure and no disclosure in Propo-

sition 1. Online Appendix B relaxes the restriction that the contest organizer must select

the bias rule from those that induce a symmetric pure-strategy equilibrium, and demon-

strates that Proposition 2 remains largely intact. Online Appendix C presents a three-player

example to illustrate contest design with endogenous biases.

A Randomized Disclosure Schemes

We have assumed that the contest organizer chooses between full disclosure and no dis-

closure in the main text. In this section, we enrich the set of candidate disclosure schemes

by allowing for partial disclosure. For the sake of simplicity, we employ and extend the setup

in the baseline N -M two-stage model in Section 2.

Specifically, instead of full disclosure and no disclosure, the contest organizer now commits

to a disclosure scheme indexed by µ ∈ [0, 1], where µ denotes the probability that the interim

rankings are disclosed. Clearly, full transparency corresponds to µ = 1 and full opacity

corresponds to µ = 0.

∗Department of Strategy and Policy, National University of Singapore, 15 Kent Ridge Drive, Singapore,
119245. Email: bizfq@nus.edu.sg

†School of Economics, Peking University, Beijing, China, 100871. Email: zenan@pku.edu.cn
1This note is not self-contained; it is the online appendix of the paper “Disclosure and Favoritism in

Sequential Elimination Contests.”
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Denote the optimal disclosure scheme that maximizes the total effort and the expected

winner’s total effort by µ∗ and µ∗∗, respectively. Standard technique leads to the following.

Proposition A1 (Suboptimality of Randomized Disclosure Schemes) Consider a

two-stage elimination contest. Suppose that Assumption 1 is satisfied and the contest orga-

nizer is allowed to randomize between full disclosure and no disclosure. Then µ∗ ∈ {0, 1}
and µ∗∗ ∈ {0, 1}.

Proof. Fixing a disclosure rule µ ∈ [0, 1], a symmetric pure-strategy equilibrium is charac-

terized by the triple (e1p, e2p, ê2p), where e1p is a representative contestant’s stage-1 effort,

and e2p (respectively, ê2p) denotes the contestant’s stage-2 effort when the interim rankings

are disclosed (respectively, concealed). We use subscript p to indicate “partial disclosure.”

Fixing µ ∈ [0, 1], a contestant’s stage-2 effort when the interim rankings are publicized

is equal to that under transparency, i.e.,

e2p =
M − (M − 1)r

M2
, (A1)

and it remains to pin down (e1p, ê2p). Fixing the other contestants’ effort profiles (e1p, ê2p),

let a contestant choose (e′1p, ê
′
2p) for the following optimization problem:

max
{ê′1p,ê′2p}

µV

 M∑
m=1

Pm(e′1p, e
−i
1p )

+(1−µ)


 M∑
m=1

Pm(ê′1p, ê
−i
1p )

× (ê′2p)
r

(ê′2p)
r + (M − 1)(ê2p)r

− ê′2p

−e′1p,
where V is defined in Equation (13). Analogously to the analysis in the proof of Lemmata

3 and 4, (e1p, ê2p) can be solved as follows:

ê2p =
(M − 1)r

NM
, (A2)

and

e1p =

[
µMV + (1− µ)

]
r

NM
×

M∑
m=1

1−
m−1∑
g=0

1

N − g

 . (A3)

It can be verified that contestants’ participation constraints are satisfied under Assumption 1,

and thus the effort profile specified by (A1)-(A3) constitutes a unique symmetric pure-

strategy equilibrium. In addition, the total effort and the expected winner’s total effort,

which we denote by TEp(µ) and WEp(µ), respectively, are

TEp(µ) ≡ Ne1p + µMe2p + (1− µ)Nê2p,
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and

WEp(µ) ≡ e1p + µe2p + (1− µ)ê2p.

Note that e2p and ê2p are independent of µ from Equations (A1) and (A2), and e1p is linear

in µ from Equation (A3). Therefore, TEp(µ) and WEp(µ) are convex in µ, implying that

µ∗ ∈ {0, 1} and µ∗∗ ∈ {0, 1}. This completes the proof.

By Proposition A1, randomization (i.e., µ ∈ (0, 1)) is always suboptimal regardless of the

organizer’s objective.

B Alternative Bidding Equilibria in Excessively Dis-

criminatory Contests

The results in Section 4 are obtained under the condition that the organizer optimizes by

choosing a bias rule δ̂ from those that induce a symmetric pure-strategy equilibrium under

opacity. In this section, we relax this restriction and show that Proposition 2 remains robust.

As seen from Lemma 2, when r ≤ 1/ΓN(q̂∗), the constraint is nonbinding as all bias

rules induce symmetric pure-strategy equilibria. The restriction, however, does limit the

set of potential bias rules for optimization when r exceeds the cutoff. An increase in r

encourages more aggressive bidding, which could cause the participation condition to break

down and dissolve symmetric pure-strategy equilibrium, as in typical static contests. The

comparison between transparency and opacity in Proposition 2 is immune to this result

when the organizer aims to maximize total effort. To be more specific, Lemma 2(ii) states

that there exists a bias rule that induces full rent dissipation in a symmetric pure-strategy

equilibrium, in which case a total effort of 1 results. This indeed reaches the limit of the

contest design, and no other mechanism could outperform it. The global optimality of

opacity can therefore be established.

The same, however, cannot be said when the organizer’s objective is to maximize the

expected winner’s total effort. With the restriction of a symmetric pure-strategy equilibrium,

the expected winner’s total effort is bounded above by 1/N , which falls below the maximum

under transparency from Proposition 2. In this case, more aggressive bias rules exist and

they break down the symmetric pure-strategy equilibrium by violating the participation

constraint. In general, multiple equilibria could arise under large r; for instance, there could

exist symmetric mixed-strategy equilibria. Alternatively, there could exist semi-symmetric

equilibria that resemble those in contests with endogenous entry depicted by Fu, Jiao and

Lu (2015): In such equilibria, a subset of contestants play symmetric pure-strategy bidding

among themselves, while the rest stay inactive by bidding zero with probability one. There

may also exist many other types of asymmetric equilibria that involve various forms of
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randomization. These equilibria could lead to a greater expected winner’s total effort than

under the restriction of symmetric equilibrium in pure strategies. To see that, imagine

a situation with r > 1/ΓN(q̂∗). In a restricted optimum, the contest ends up with an

expected winner’s total effort 1/N . If the organizer instead sets a rule that breaks down this

equilibrium and induces a semi-symmetric equilibrium with N − 1 active contestants, the

expected winner’s total effort is then bounded by 1/(N − 1) instead of 1/N .

It is technically challenging to fully characterize these equilibria in our context. Re-

call that the dynamic linkage between stages dissolves in the contest under opacity, which

leads contestants to behave as if they were choosing multiple actions simultaneously, i.e.,

ê1 and ê2, in a static contest. The literature provides little guidance in solving for asym-

metric or mixed-strategy equilibria in imperfectly discriminatory contests that involve multi-

dimensional strategies: In such a scenario, each contestant can randomize in either dimension,

i.e., either ê1 or ê2. This is particularly challenging in our context because (i) the probability

of winning in Tullock contests is discontinuous at the origin; and (ii) one’s stage-2 outcome

ultimately depends on stage-1 outcome, despite the dissolved dynamic linkage due to opacity.

Moreover, the multiplicity of equilibria imposes conceptual limitations on contest design: It

is difficult to predict the performance of the contest when the particular equilibrium to be

played under a given bias rule remains ambiguous.

Despite the limitations, our result does not lose its bite when we allow for the aforemen-

tioned semi-symmetric equilibria and consider bias rules that could induce semi-symmetric

equilibria. Imagine an equilibrium that involves N ′ ∈ {3, . . . , N − 1} active contestants

under opacity. The contest in this equilibrium is essentially equivalent to an alternative N ′-

contest in a symmetric pure-strategy equilibrium. As a result, enlarging the set of eligible

bias rules to allow for these semi-symmetric equilibria is no different than letting the contest

organizer shortlist the contestants—i.e., excluding N −N ′ contestants and inviting the rest

to participate in a two-stage contest—while optimizing over the set of bias rules that induce

a symmetric pure-strategy equilibrium. We then consider an alternative optimization prob-

lem: Under a given disclosure policy, the organizer sets the optimal number of participants,

and chooses the optimal bias rule accordingly over the set of candidate rules that induce a

symmetric pure-strategy equilibrium.

Lemma A1 ΓN(q̂∗) strictly increases with N .

Proof. To highlight the fact that q̂∗ depends on N , let us denote the optimal winning

probabilities for the case of N contestants by q̂∗N := (q̂∗1N , . . . , q̂
∗
NN). To prove the lemma, it

suffices to show that ΓN(q̂∗N) < ΓN+1(q̂∗N+1). Let q̂?N+1 = (q̂∗1N , . . . , q̂
∗
NN , 0). It follows from
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Equation (28) that

ΓN+1(q̂?N+1)− ΓN(q̂∗N) =
N∑
m=1



1−

m−1∑
g=0

1

N + 1− g

−
1−

m−1∑
g=0

1

N − g


× q̂∗mN


=

1

N + 1
×

N∑
m=1

[
m

N −m+ 1
× q̂∗mN

]
> 0.

Therefore, we have that ΓN+1(q̂∗N+1) ≥ ΓN+1(q̂?N+1) > ΓN(q̂∗N). This completes the proof.

By Lemma A1, the cutoff 1
ΓN (q̂∗)

strictly decreases when the number of participants

increases. When fewer participants are involved, a symmetric pure-strategy equilibrium is

more likely to emerge. In other words, the organizer, when narrowing the pool, ends up with

additional freedom in choosing the bias rule. Note that Γ3(q̂∗) = 11
12
< 1, which implies that

if the organizer invites only three participants, she can induce a symmetric pure-strategy

equilibrium for any contest rule under Assumption 2. The following result can then be

obtained.

Proposition A2 Fix N ≥ 4 and r ∈ (0, 1]. Suppose that the contest organizer is allowed

to shortlist contestants and select N ′ ∈ {3, . . . , N} of them for the competition. When the

contest organizer is able to set the bias rule for the second-stage competition, she always

prefers transparency to opacity if she aims to maximize the expected winner’s total effort.

We do not have to lay out a formal proof, as the logic is straightforward. Suppose that

the optimum under opacity requires N participants. Then the optimum under opacity is out-

performed by that under transparency by Proposition 2. Suppose otherwise that it requires

N ′ ∈ {3, . . . , N −1} participants, which demands that the organizer shortlist. The optimum

is still outperformed by that under transparency: The organizer, under transparency, can

shortlist the same number N ′ of participants and set the optimal bias rule accordingly, which

again generates a greater expected winner’s total effort by Proposition 2. We thus restore

the optimality of transparency in a broader setting.

C Three-player Example of Optimal Contest Design

with Endogenous Biases

As stated in Section 4, we can establish a correspondence between contestants’ efforts

and winning probabilities in equilibrium. This further allows us to rewrite design objectives,

total effort and the expected winner’s total effort, as functions of the equilibrium winning
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probability distribution. Our optimization approach lets the organizer choose equilibrium

winning probability distribution to maximize reformulated objective functions. Table A1

summarizes the equilibrium winning probability distribution in the optimal contest under

transparency for the case of N = 3.

Transparency q∗1 q∗2 q∗3 TERT (q∗)
63−3

√
241

50
< r ≤ 1 8r2+9r−72

3(7r2−36)
r2+45r−90
6(7r2−36)

25r2−63r+18
6(7r2−36)

r(5r3+33r2+171r−621)
126r2−648

0 < r ≤ 63−3
√

241
50

15−5r
2(12−5r)

9−5r
2(12−5r)

0 r(25r2−170r+273)
288−120r

Transparency q∗∗1 q∗∗2 q∗∗3 WERT (q∗∗)

0 < r ≤ 1 21−5r
36−10r

15−5r
36−10r

0 r(25r2−230r+513)
1296−360r

Table A1: Optimal Equilibrium Winning Probabilities under Transparency in Three-Player
Contests.

By Table A1, when r > 63−3
√

241
50

≈ 0.3285, the optimal contest involves three active

players in the second stage—i.e., q∗1 > q∗2 > q∗3 > 0—and the equilibrium winning distribution

can be induced by a bias rule (δ∗1, δ
∗
2, δ
∗
3) =

(
1

1−q∗1
(q∗1)

1−r
r , 1

1−q∗2
(q∗2)

1−r
r , 1

1−q∗3
(q∗3)

1−r
r

)
. When

r ≤ 63−3
√

241
50

≈ 0.3285, the optimal contest involves two active players in the second stage—

i.e., q∗1 > q∗2 > q∗3 = 0—and the equilibrium winning distribution can be induced by a bias

rule (δ∗1, δ
∗
2, δ
∗
3) =

(
1

1−q∗1
(q∗1)

1−r
r , 1

1−q∗2
(q∗2)

1−r
r , 0

)
.

Table A2 summarizes the equilibrium winning probability distribution in the optimal

contest under opacity.

Opacity q̂∗1 q̂∗2 q̂∗3 TERT (q̂∗) WERT (q̂∗)

0 < r ≤ 1 5
8

3
8

0 91
96
r 91

298
r

Table A2: Optimal Equilibrium Winning Probabilities under Opacity in Three-Player Con-
tests.

Although the bottom-ranked contestant has zero chance of winning the prize in the

optimum, he is uninformed of his status and continues to exert effort in the second stage.

The optimal equilibrium winning probability distribution simultaneously maximizes the total

effort exerted in the overall contest and the expected winner’s total effort, and is independent

of the discriminatory power of the contest technology (i.e., r).
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