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Abstract

This paper explores the optimal design of biased contests. A designer imposes an

identity-dependent treatment on contestants, which varies the balance of the playing

field. A generalized lottery contest typically yields no closed-form equilibrium solutions,

which nullifies the usual implicit programming approach to optimal contest design and

limits analysis to restricted settings. We propose an alternative approach that allows

us to circumvent this difficulty and characterize the optimum in a general setting under

a wide array of objective functions without solving for the equilibrium explicitly. Our

technique applies to a broad array of contest design problems, and the analysis it

enables generates novel insights into incentive provision in contests and their optimal

design. For instance, we demonstrate that the conventional wisdom of leveling the

playing field, which is obtained in limited settings in previous studies, does not generally

hold.
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1 Introduction

Contests are widely administered in practice to mobilize productive effort. For instance,

workers strive to be promoted to higher rungs on hierarchical ladders inside a firm (see, for

instance, Rosen, 1986). Governments, firms, and even wealthy individuals sponsor innova-

tion contests to promote research efforts (see Che and Gale, 2003). In a contest, contenders

expend costly effort to vie for limited prizes and are rewarded based on their relative per-

formance instead of absolute output metrics.

The ubiquity of contest-like competitive activities has triggered broad interest in their

strategic substance and the optimal design of competitive schemes that spur incentive provi-

sion.1 This paper explores a classic question: How should a designer bias the competition to

boost the performance of a contest? Contestants’ behaviors sensitively depend on their rel-

ative competitiveness, which can often be determined endogenously by the choice of contest

rules. A designer can impose identity-dependent preferential treatments on contestants—

tailored to their individual characteristics—to vary contestants’ relative standing. Consider,

for instance, government policies that favor small and medium-sized enterprises (SMEs) in

public procurement to support local entrepreneurship (Che and Gale, 2003; Epstein, Mealem,

and Nitzan, 2011) and colleges that allocate bonus points to minority applicants (Fu, 2006;

Franke, 2012).

The literature broadly embraces the notion that a more level playing field fuels com-

petition.2,3 The conventional wisdom, however, is obtained in restricted settings—e.g., two

players, stylized contest technologies, and limited objective functions—due to technical chal-

lenges. This paper develops a novel optimization approach that allows us to circumvent the

analytical difficulty and identify the key properties of the optimum in a general context.

The analysis yields novel implications that illuminate the nature of incentive provision in

contests and refute the conventional wisdom.

Nature of the Generalized Optimization Problem The conventional wisdom of lev-

eling the playing field is underpinned primarily by the rationale that favoring the underdog

boosts his incentive, which further deters the favorite from slacking off. This logic, however,

rests on contestants’ nonmonotone best responses in bilateral strategic relation (Lazear and

Rosen, 1981; Dixit, 1987). Involving more than two players fundamentally alters the nature

of the strategic interaction in a contest and its optimal design.

1See Fu and Wu (2019a) for a recent survey of theoretical studies of contests.
2See the recent survey of Chowdhury, Esteve-González, and Mukherjee (2019) on biased contests.
3Two notable exceptions are provided by Fu, Lu, and Lu (2012) and Drugov and Ryvkin (2017). The

former show that a performance-maximizing administrator may allocate more productive resources to an ex
ante stronger firm. The latter show that it can be optimal to bias an otherwise symmetric contest. Both
studies focus on two-player settings.
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First, setting optimal identity-dependent preferential treatments in a two-player setting

is a unidimensional problem, because favoring one equivalently handicaps the other. With

more than two contestants, the strategic interactions are no longer reciprocal or direct.

Contestants are reflexively entangled, which expands the channels through which a treatment

could manipulate their behavior.

Imagine a contest with three players indexed by 1, 2, and 3. Suppose that a favorable

bias is imposed on player 3. This directly boosts his own incentive, which compels the other

two to respond. The favor given to player 3 also affects the strategic interaction between

players 1 and 2: Player 1’s response to the more competitive player 3 forces player 2 to adjust

his behavior, and vice versa. This compounds the incentive effect of the bias on player 3; its

overall effect must sum up contestants’ responses over all of the links.

Second, a two-player setting narrows the scope of the optimal biased contest design

problem. With more than two contestants, setting biases not only manipulates the balance

of the playing field, but also selects preferred contestants: Handicapping a player can force

him to exit, which is possible only if at least three contenders are present.

The conventional wisdom—which is obtained from restricted settings—deserves to be

examined more generally. However, the analysis entails substantial complications. Optimal

contest design results in a mathematical program with equilibrium constraints (MPEC) and

typically requires an implicit programming approach. One has to solve for the equilibrium

bidding strategies for any given parameterized contest rule, insert the solution into the

objective function, and search for the optimal rule (e.g., Franke, Kanzow, Leininger, and

Schwartz, 2013). The approach loses its bite in an asymmetric n-player contest, as in general

it yields no closed-form equilibrium solution.

We propose an alternative optimization approach that allows us to characterize the op-

timum without solving explicitly for the equilibrium. Next, we provide a snapshot of the

approach and its underlying logic.

Optimization Approach We adopt the framework of generalized lottery contests to

model a noisy winner-take-all contest in which a higher effort does not ensure a win. Suppose

that the contest involves n ≥ 2 players who differ in their prize valuations. For a given effort

profile x ≡ (x1, . . . , xn), one wins with a probability

pi(x) =
fi(xi)∑n
j=1 fj(xj)

,

where fi(·) maps one’s effort outlays onto his effective output and is conventionally called

the impact function of contestant i ∈ {1, . . . , n}. We focus on the two most popularly

adopted instruments for identity-dependent preferential treatments in the literature: The
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impact function takes the form

fi(xi;αi, βi) = αi · h(xi) + βi,

where αi is a multiplicative bias and βi is an additive headstart. The designer imposes a

contest rule (α,β) ≡
(
(α1, . . . , αn), (β1, . . . , βn)

)
, with αi, βi ≥ 0, which depicts how each

contestant is favored or handicapped vis-à-vis his opponents.

Despite the lack of a closed-form solution, a unique equilibrium exists under mild regu-

larity conditions. The equilibrium condition alludes to a correspondence, which provides a

system of equations; each equation expresses an individual’s equilibrium effort as a function

of his own equilibrium winning odds and prize valuation. The correspondence thus literally

disaggregates the strategic interaction between contestants into a series of individual decision

problems. The contest rule (α,β) does not appear in the equation and is encapsulated in

each contestant’s equilibrium winning probability. The design objective can be rewritten ac-

cordingly as a function of equilibrium winning probability distribution. Instead of optimizing

over the choice of contest rule, we let the designer directly assign winning probabilities among

contestants to maximize the reformulated objective function, which reduces the optimization

problem to a simple programming that allocates probability mass among contestants based

on their prize valuations. Finally, we demonstrate that any winning probability distribution

can be induced by a contest rule in equilibrium, which closes the loop.

Implications and Applications In this paper, we set up a general objective function that

addresses a wide spectrum of concerns in contest design. Our analysis yields rich implications

that reveal general properties of optimal biased contests.

First, we show that allowing for headstarts β—in addition to the freedom to set bi-

ases α—cannot further improve the performance of the contest. It is thus without loss of

generality to focus solely on the optimal choice of biases α.

Second, we establish a general exclusion principle. The literature has debated whether

certain players should be excluded from the competition (e.g., Baye, Kovenock, and de Vries,

1993; and Fang, 2002). In contrast to previous studies that allow for outright exclusion,

we consider implicit exclusion by setting biases. Under mild conditions, we show that the

optimal exclusion is monotone in the sense that exclusion always starts from the the weakest.

Third, we apply our approach to the classical effort-maximizing problem. To maximize

total effort, the optimum must involve at least three active contestants whenever possible. A

two-player contest is thus suboptimal and a knife-edge case. Further, the optimum precludes

a “superstar,” in that an individual contestant’s winning odds must fall below 1/2. We then

proceed to the maximization of the expected winner’s effort and show that the optimum

keeps only the two top-ranked contestants active.
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Fourth, our approach allows us to reexamine the conventional wisdom of leveling the play-

ing field. The literature has centered on two fundamental questions: (i) Should contestants’

winning odds be equalized (i.e., leveling the playing field in terms of ex post equilibrium

outcomes)? (ii) Should the contest rule favor weaker contestants vis-à-vis their stronger

opponents (i.e., leveling the playing field in terms of ex ante contest rules)? Our analysis

overturns the conventional wisdom. We show that equalized winning odds are an artifact of

bilateral competitions. With three or more contestants, the strongest player may turn out

to be the least likely winner; contestants’ equilibrium winning probabilities can even be non-

monotone with respect to the rankings of their prize valuations.4 Further, we demonstrate

that the contest rule may even upset the balance of the contest by favoring stronger contes-

tants when more than two contestants are involved; the optimal biases can be nonmonotone,

in the sense that a middle-ranked contestant is the most privileged.

The rest of the paper proceeds as follows. Section 2 describes the contest model and

the optimization problem. Section 3 develops our optimization approach and characterizes

the optimal contests. Section 4 reexamines the conventional wisdom of leveling the playing

field, and Section 5 concludes. Appendix A lays out the microfoundations of the underlying

contest model. Appendix B collects proofs that are not provided in the main text.

2 Setup and Preliminaries

In this section, we present the fundamentals of the underlying contest game.

2.1 Generalized Lottery Contests

There are n ≥ 2 risk-neutral contestants competing for a prize. The prize bears a value

vi > 0 for each contestant i ∈ N ≡ {1, . . . , n}, with v1 ≥ . . . ≥ vn > 0, which is common

knowledge. A contestant’s prize valuation measures his strength, as a higher valuation

motivates effort. Contestants simultaneously submit their effort entries xi ≥ 0 to vie for the

prize, which incur a cost of c(xi).

We consider a generalized lottery contest with a ratio-form contest success function: For

a given effort profile x ≡ (x1,, . . . , xn), a contestant i wins with a probability

pi(x) =


fi(xi)∑n
j=1 fj(xj)

if
∑n

j=1 fj(xj) > 0,

1

n
if
∑n

j=1 fj(xj) = 0,

(1)

4In a standard lottery contest with h(xi) = xi, Franke, Kanzow, Leininger, and Schwartz (2013) show
in a numerical example that the optimal biased contest rule favors ex ante weaker contestants but does not
fully level the playing field, in the sense that an ex ante stronger contestant wins with a larger probability.
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where the function fi(·), labeled the impact function in the contest literature, converts one’s

effort into his effective output and satisfies fi(xi) ≥ 0 for all xi ≥ 0. A contestant i ∈ N
is excluded from the contest if fi(xi) = 0 for all xi ≥ 0. In the extreme case in which only

one contestant has an increasing impact function, while the others’ is a zero constant, we

assume that he wins automatically.5 Appendix A presents two rationales for the model’s

microeconomic underpinning: (i) a noisy-ranking approach adapted from the discrete-choice

model (Clark and Riis, 1996; Jia, 2008); and (ii) a research tournament analogy (Loury,

1979; Dasgupta and Stiglitz, 1980; Fullerton and McAfee, 1999; Baye and Hoppe, 2003).

Given x ≡ (x1, . . . , xn) and (1), contestant i’s expected payoff can be written as

πi(x) := pi(x) · vi − c(xi).

Our paper encapsulates contestants’ heterogeneity into the difference in their prize val-

uations. The model depicts a context in which the prize is nonmonetary and contestants

value it differently. It should be noted that our analysis accommodates an alternative setup

that allows for heterogeneity in effort costs. To see this, suppose that the prize carries a

common monetary value—which we normalize to unity—while contestants differ in their

abilities. Following Moldovanu and Sela (2001, 2006) and Moldovanu, Sela, and Shi (2007),

a contestant i’s effort cost takes the form ci(xi) = c(xi)/di, with d1 ≥ . . . ≥ dn > 0. The

parameter di measures one’s ability: A more competent contestant is endowed with a larger

di and bears a lower effort cost. Each contestant chooses effort xi to maximize the expected

payoff pi(x) − c(xi)/di, which is equivalent to maximizing pi(x) · di − c(xi). The game is

isomorphic to that in our baseline setting, and the parameter di plays the same role as vi.

The analysis in the baseline setting naturally extends.6

2.2 Regularity Condition and Equilibrium Property

The set of impact functions
{
fi(·)

}n
i=1

, together with contestants’ valuations v ≡ (v1, . . . , vn)

and the effort cost function c(·), defines a simultaneous-move contest game. We impose the

following regularity condition.

Definition 1 (Regular Concave Contests) A contest
(
v,
{
fi(·)

}n
i=1

, c(·)
)

is called a

regular concave contest if (i) the impact function for contestant i ∈ N is either a nonnegative

constant or a twice-differentiable function, with fi(xi) ≥ 0, f ′i(xi) > 0, and f ′′i (xi) ≤ 0 for

all xi ≥ 0; and (ii) the effort cost function satisfies c(0) = 0, c′(xi) > 0, and c′′(xi) ≥ 0 for

all xi > 0.

5This assumption is imposed to guarantee the existence of a pure-strategy Nash equilibrium.
6In an online appendix, we analyze an extended setting in which the heterogeneity in effort cost functions

is modeled more generally.
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The above definition simply requires the usual concave impact functions and a convex

effort cost function, which ensure a concave payoff function in effort and are widely adopted

in the literature. Szidarovszky and Okuguchi (1997) and Cornes and Hartley (2005) prove

the existence and uniqueness of the equilibrium in the above contest game with fi(0) = 0 for

all i ∈ N . Their results cannot be applied directly to contests that allow for headstarts, i.e.,

fi(0) > 0 for some i ∈ N . The following theorem relaxes the zero-headstart assumption.

Theorem 1 (Existence and Uniqueness of Equilibrium) There exists a unique pure-

strategy Nash equilibrium in a regular concave contest game
(
v,
{
fi(·)

}n
i=1

, c(·)
)
.

Our study focuses on the above-defined concave contests for two reasons. First, when

impact functions are convex, a pure-strategy equilibrium does not often exist. Although

mixed-strategy equilibria exist, they generally are not unique and their properties remain

elusive in the literature (e.g., Ewerhart, 2015, 2017). Second, the condition alludes to the

usual production technology with nonincreasing marginal output.

2.3 Design Instruments and Contest Objectives

Theorem 1 allows us to set up the contest design problem in a two-stage structure. First,

the designer sets the contest rule and announces it publicly; second, contestants exert effort

simultaneously to vie for the prize. We first discuss the instruments available to the designer

and then elaborate on the properties and implications of the objective function.

2.3.1 Design Instruments

We follow the tradition in the literature and mainly focus on two types of instruments to

model identity-dependent preferential treatment: (i) multiplicative biases—i.e., weights on

contestants’ effective output—and (ii) additive headstarts. To put this formally, the impact

function takes the form

fi (xi;αi, βi) = αi · h (xi) + βi. (2)

The function h(·) is exogenously given as the fundamental contest technology ;7 the identity-

dependent treatment imposed on each contestant i ∈ N is given by a tuple (αi, βi), with

αi, βi ≥ 0.8 The contest technology h (·) is assumed to have the following properties.

7In an online appendix, we analyze an extended setting in which contestants are endowed with heteroge-
neous contest technologies hi(·).

8 Drugov and Ryvkin (2017) study a two-player contest with headstart in which contestant 1 wins with
a probability p1 = (x1 + β)/(x1 + x2), and contestant 2 wins with a probability 1 − p1. This two-player
contest is equivalent to a lottery contest in which contestants 1 and 2 are endowed with an identity-dependent
headstart of β and −β, respectively.
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Assumption 1 (Concave Contest Technology) h(·) is twice differentiable, with h(0) =

0, h′(x) > 0, and h′′(x) ≤ 0 for all x > 0.9

Both the multiplicative bias, αi, and the additive headstart, βi, are popularly adopted in

the literature to model preferential treatments. Fu (2006); Franke (2012); Franke, Kanzow,

Leininger, and Schwartz (2013, 2014); and Epstein, Mealem, and Nitzan (2011) focus on the

former, while Clark and Riis (2000); Konrad (2002); Siegel (2009, 2014); Kirkegaard (2012);

and Li and Yu (2012) consider the latter. Franke, Leininger, and Wasser (2018) allow for

both. Both instruments vary a contestant’s (deterministic) output, but through starkly

different channels: αi scales a contestant’s output up or down for any given effort, while

βi directly adds to it regardless of his effort. The contrast inspires interesting comparisons,

which generate useful implications for contest design.

2.3.2 A General Objective Function

The designer chooses (α,β) to maximize an objective function Λ(·), which is a function

of the effort profile x ≡ (x1, . . . , xn); the profile of winning probabilities p ≡ (p1, . . . , pn); and

the profile of prize valuations v ≡ (v1, . . . , vn). We impose the following regularity condition

on Λ(x,p,v).

Assumption 2 (Objective Function) Fixing p ≡ (p1, . . . , pn) and v ≡ (v1, . . . , vn),

Λ(x,p,v) is weakly increasing in xi for all i ∈ N .

The assumption simply requires that contestants’ efforts accrue to the benefit of the

contest designer: For a given winning probability distribution p, an increase in a contestant’s

effort does not reduce the designer’s payoff.

The objective function Λ(x,p,v) encompasses a wide array of scenarios. First consider

the following:

Λ(x,p,v) :=
n∑
i=1

xi + ψ

n∑
i=1

pivi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

, (3)

with ψ ≥ 0 and γ ≥ 0. The function obviously satisfies Assumption 2.

When the weights ψ and γ both reduce to zero, the above expression boils down to

Λ(x,p,v) =
∑n

i=1 xi, the popularly studied objective of total effort maximization. The

objective function (3) allows the designer to have a direct preference for contestants’ winning

probability distribution. The term
∑n

i=1

(
pi − (

∑n
j=1 pj)/n

)2
is the variance of the winning

9With αi, βi ≥ 0, Assumption 1 ensures that the game satisfies the requirements of Definition 1, and
Theorem 1 applies, by which a unique pure-strategy equilibrium exists.
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probabilities. With γ > 0, the designer prefers a less predictable outcome. For instance,

in sports competitions, spectators often not only appreciate contenders’ efforts, but also

demand more suspense about the eventual winner (see Chan, Courty, and Hao, 2008; and

Ely, Frankel, and Kamenica, 2015).10 The contest objective also accommodates the pursuit

of selection efficiency (see Meyer, 1991; Hvide and Kristiansen, 2003; Ryvkin and Ortmann,

2008; and Fang and Noe, 2018): The additional component
∑n

i=1 pivi strictly increases when

a contestant of a higher valuation is able to win more often, which also provides an example

of how contestants’ prize valuations could directly affect the designer’s payoff.11

In many competitive events, however, only the winner’s effort is relevant to the organizer’s

interest. Suppose that the contest designer only cares about the expected winner’s effort.

The objective function can be written as

Λ(x,p,v) =
n∑
i=1

pixi, (4)

which clearly satisfies Assumption 2. This objective function has gained increasing attention

in the literature (e.g., Moldovanu and Sela, 2006; Serena, 2017; and Barbieri and Serena,

2019). A CEO succession race motivates candidates to develop their managerial skills when

carrying out assigned tasks: Large public firms—e.g., GE and HP—often have difficulty

retaining losing candidates, which would lead them to focus only on the acquisition of human

capital from the winner (Fu and Wu, 2019b).12

10Such a preference is also assumed by Fort and Quirk (1995), Szymanski (2003), and Runkel (2006) in
two-player settings.

11The contest designer may care about both effort supply and contestants’ welfare (e.g., Epstein, Mealem,
and Nitzan, 2011). Recall that a contestant i has an expected payoff πi = pivi − xi with linear effort
cost functions. This preference can formally be expressed as Λ(x,p,v) := φ

∑n
i=1 πi + (1 − φ)

∑n
i=1 xi =

φ
∑n
i=1 pivi + (1 − 2φ)

∑n
i=1 xi. Assumption 2 is satisfied if and only if φ ≤ 1

2 , in which case this objective
function boils down to a case of the objective function (3). Higher efforts, however, would cause net disutility
to the designer if her preference over contestants’ welfare is excessively strong—i.e., φ > 1

2—which defies
Assumption 2.

12It is useful to point out that the expected winner’s effort may differ subtly from the expected winner’s
performance. As previously noted, a generalized lottery contest can either be underpinned by a noisy tour-
nament adapted from a discrete-choice model or a research tournament. Contestants’ output or performance
is a random variable that increases with their efforts. Fu and Wu (2019b) consider a succession race in
which a firm selects a CEO based on observed output, but candidates’ efforts add to their human capital,
which leads to objective (4) when the firm only cares about the successor’s skill. However, when the designer
benefits from the winner’s noisy output or performance—e.g., a procurement tournament or an architectural
design competition—the objective function will be formulated alternatively, depending on the underlying
noisy production process. In a noisy tournament, it is given by

∑n
i=1 pifi(xi). In a research tournament à

la Fullerton and McAfee (1999), it is
∑n
i=1 fi(xi).
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3 Optimal Contest Design: Analysis

Given the existence and uniqueness of a pure-strategy equilibrium in the contest game for

arbitrary (α,β), the optimal contest design problem yields a typical mathematical program

with equilibrium constraints (MPEC): Contestants’ equilibrium effort profile, x, is endoge-

nously determined in the equilibrium as a function of (α,β), and the designer chooses (α,β)

for the following optimization problem:

max
{x,α,β}

Λ(x,p,v)

subject to xi = arg max
xi≥0

πi(x;α,β),

pi(x;α,β) =


fi (xi;αi, βi)∑n
j=1 fj(xj;αj, βj)

if
∑n

j=1 fj(xj;αj, βj) > 0,

1

n
if
∑n

j=1 fj(xj;αj, βj) = 0.

The conventional approach requires an equilibrium solution of effort profile x for an

arbitrary (α,β), which is, in general, unavailable. We take a detour to bypass the difficulty,

and the approach can be described as follows:

i. We resort to the first-order conditions for the unique equilibrium of a contest game

under an arbitrary contest rule (α,β), and show that the optimum can always be

achieved by a contest rule with zero headstart. This allows us to focus on only the

optimal choice of α.

ii. We establish a correspondence between contestants’ equilibrium effort profile x and

equilibrium winning probability distribution p.

iii. Based on the correspondence noted above, we rewrite the objective as a function of the

winning probability distribution. Instead of searching directly for the optimal contest

rule, we let the designer assign equilibrium winning probabilities to contestants. We

then solve for the probability distribution that maximizes the objective function.

iv. Finally, we identify the contest rule that induces the desirable winning probability

distribution in equilibrium.

In the unique equilibrium of a contest game, the first-order condition ∂πi(x)/∂xi = 0

must be satisfied for an active contestant i ∈ N . With the impact functions specified in

expression (2), the condition can be rewritten as

9



∑
j 6=i
[
αjh(xj) + βj

]{∑n
j=1

[
αjh(xj) + βj

]}2 · h
′(xi) =

1

αivi
· c′(xi), for xi > 0.

Similarly, the following inequality holds if contestant i remains inactive in equilibrium:∑
j 6=i
[
αjh(xj) + βj

]{∑n
j=1

[
αjh(xj) + βj

]}2 · h
′(xi) ≤

1

αivi
· c′(xi), for xi = 0.

The above equilibrium conditions, together with the winning probability pi(x) specified

in Equation (1), imply immediately that

pi(1− pi)vi = c′(xi) ·
αih(xi) + βi
αih′(xi)

, for xi > 0, 13 (5)

and

pi(1− pi)vi ≤ c′(xi) ·
αih(xi) + βi
αih′(xi)

, for xi = 0. (6)

3.1 Suboptimality of Additive Headstart

We now demonstrate that multiplicative biases outperform additive headstarts. Specifi-

cally, we show that fixing an arbitrary contest rule with positive headstarts, we can always

construct an alternative contest rule with zero headstart that induces the same equilibrium

winning probability distribution but strictly higher effort.

A sketch proof is provided below. Denote by (α∗,β∗) ≡
(
(α∗1, . . . , α

∗
n), (β∗1 , . . . , β

∗
n)
)

the optimal contest rule that maximizes Λ(x,p,v); the corresponding equilibrium effort

profile and winning probabilities are denoted by x∗ ≡ (x∗1, . . . , x
∗
n) and p∗ ≡ (p∗1, . . . , p

∗
n),

respectively. Suppose that β∗t > 0 for some t ∈ N in the optimum. We focus on an arbitrary

active contestant t, i.e., x∗t > 0, as the logic naturally extends to inactive ones with x∗t = 0.

Recall the equilibrium condition

p∗t (1− p∗t )vt = c′(x∗t ) ·
α∗th(x∗t ) + β∗t
α∗th

′(x∗t )
.

13We need αi > 0 for the right-hand side to be well defined, which clearly holds. In fact, if αi = 0, it
is straightforward to see that xi = 0 is a strictly dominant strategy for player i due to the fact that costly
effort has zero impact on player i’s winning probability.
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Denote by x† the unique solution to the following equation:

c′(x∗t ) ·
α∗th(x∗t ) + β∗t
α∗th

′(x∗t )
= c′(x†) · h(x†)

h′(x†)
.14 (7)

Simple analysis would verify that x† > x∗t , given β∗t > 0. Consider an alternative contest

rule with α̃ ≡ (α̃1, . . . , α̃n) and β̃ ≡ (β̃1, . . . , β̃n), such that

(
α̃i, β̃i

)
:=


(
α∗t h(x∗t )+β∗t

h(x†)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

In words, all contestants are awarded the same identity-dependent treatment as before except

for contestant t. The new contest rule removes the headstart for contestant t. Simple algebra

verifies that the equilibrium effort profile under the new contest rule (α̃, β̃)—which we denote

by x̃∗ ≡ (x̃∗1, . . . , x̃
∗
n)—is given by

x̃∗i =

{
x† for i = t,

x∗i for i 6= t.

The new contest rule outperforms under Assumption 2. It induces the same winning prob-

ability distribution, because α̃t · h(x†) + β̃t = α∗t · h(x∗t ) + β∗t by our construction, while the

effort of contestant t strictly increases because x† > x∗t by Equation (7).15 This argument

leads to the following.

Theorem 2 (Suboptimality of Headstart) Suppose that Assumptions 1 and 2 are sat-

isfied. The optimum can always be achieved by choosing multiplicative biases α only and

setting headstarts β to zero.

It is thus without loss of generality to abstract away headstart and focus on multiplicative

biases when searching for the optimal biased contests, i.e., assuming fi(xi;αi, βi) = αi ·h(xi),

with βi = 0 for all i ∈ N .16 Franke, Leininger, and Wasser (2018, Proposition 3.6) obtain

14The existence and uniqueness of the solution x† follows from the facts that c′(x) · h(x)/h′(x) is strictly
increasing in x, limx↘0 c

′(x) · h(x)/h′(x) = 0, and limx↗∞ c′(x) · h(x)/h′(x) =∞.
15A closer inspection of Equation (7) indicates that x† > x∗t may not hold if the headstart βt is allowed

to be negative, in which case the comparison depends on the properties of c′(·), h(·), and h′(·). Drugov and
Ryvkin (2017) allow for negative headstart (see Footnote 8) and show that a deviation from zero headstart
can locally improve the performance of the contest, depending on the sign of c′′′(·). They focus on the local
property of the objective function with respect to the design instrument. It is noteworthy that negative
headstart could nullify the contest success function (1) and cause irregularity to the contest game when
examining the global property of the objective function. We therefore focus on a setting of β ≥ 0.

16Headstarts, however, can be preferred to multiplicative biases by a total-effort-maximizing contest de-
signer in all-pay auctions. See Li and Yu (2012) and Franke, Leininger, and Wasser (2018) for more details.
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similar results. Specifically, they show in a standard lottery contest—i.e., h(xi) = xi—that

a positive headstart is suboptimal when the designer aims to maximize total effort. Our

analysis generalizes Franke et al. (2018) in two dimensions: First, we allow for a flexible

contest technology, and second, the optimization problem addresses a broad objective.

3.2 Reformulated Design Problem

Theorem 2 allows us to derive the fundamental equilibrium correspondence that under-

pins our optimization approach: With βi = 0, the following must hold in an equilibrium:

pi(1− pi)vi = c′(xi) ·
h(xi)

h′(xi)
, ∀ i ∈ N . (8)

A system of n set-valued functional equations depicts the relation between winning prob-

ability distribution p and contestants’ effort profile x in equilibrium, with the right-hand

side strictly increasing with xi. In what follows, we call the system of equations the equilib-

rium correspondence of the contest game. The correspondence reminds us of the first-order

condition (5) for an active player. However, it also holds for an inactive contestant, as

xi = 0 is associated with pi = 0. Further, define the inverse of log(c′(x) · h(x)/h′(x)) as g(·).
Assumption 1 and the convexity of the effort cost function imply that g(·) is well defined.

In particular, g(·) is a strictly increasing function, with g(−∞) = 0 and g(∞) = ∞. The

correspondence (8) can be rewritten as

xi = g
(

log(pi
(
1− pi)

)
+ log(vi)

)
,∀ i ∈ N . (9)

Two remarks are in order. First, each equation in the system of equations (9) literally

delineates a direct and unique relation between xi and (pi, vi) for an individual contestant i ∈
N . The equilibrium probability pi can be viewed as a sufficient statistic of the equilibrium in

the contest: pi is not exogenously given, but endogenously determined jointly by contestants’

equilibrium effort profile x ≡ (x1, . . . , xn) and the treatment α ≡ (α1, . . . , αn). Second, the

correspondence (9) unveils the nature of incentive provision in contests. A contestant’s effort

decision ultimately takes into account two basic factors: (i) value (vi), i.e., how much he can

be rewarded when he wins; and (ii) prospect (pi), i.e., the expectation about how likely he

is to win.

The correspondence (9) opens a new avenue for contest design. The objective func-

tion Λ(x,p,v) can be rewritten as Λ
(
x(p,v),p,v

)
; instead of setting α directly, we treat

winning probability distribution p as the design variable and let the designer maximize

12



Λ
(
x(p,v),p,v

)
, subject to (9) and the following feasibility constraints:

n∑
i=1

pi = 1, and pi ≥ 0, for all i ∈ N . (10)

A maximizer automatically exists for any smooth and continuous objective Λ
(
x(p,v),p,v

)
given that the choice set, defined by (10), is an (n− 1)-dimensional simplex. The following

is established as the last piece of the puzzle.

Theorem 3 (Implementing Winning Probabilities by Setting Biases) Fix any

equilibrium winning probability distribution p ≡ (p1, . . . , pn) ∈ ∆n−1.

i. If pj = 1 for some j ∈ N , then p ≡ (p1, . . . , pn) can be induced by the following set of

biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =

{
1 if i = j,

0 if i 6= j.

ii. If there exist at least two active contestants, then p ≡ (p1, . . . , pn) can be induced by

the following set of biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =


pi

h

(
g
(

log(pi(1−pi))+log(vi)
)) if pi > 0,

0 if pi = 0.

(11)

Theorem 3 formally states that the contest designer can properly construct the set of

weights α to induce any equilibrium winning probability distribution.17 The result closes

the loop for the reformulated optimization problem: Upon obtaining the maximizer to

Λ
(
x(p,v),p,v

)
, the optimal biases α∗ ≡ (α∗1, . . . , α

∗
n) can readily be identified by invok-

ing Theorem 3.

Consider, for example, the widely studied Tullock contest with h (xi) = (xi)
r and assume

a linear effort cost function c(xi) = xi. An equation in the correspondence (9) boils down to

xi = rpi(1− pi)vi. The above-mentioned objective function (3) can be rewritten as

Λ
(
x(p,v),p,v

)
:=

n∑
i=1

[
rpi(1− pi)vi

]
+ ψ

n∑
i=1

pivi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

,

17It should be noted that the biases α that induce each given p are not unique. For instance, the same
equilibrium outcome can be induced by multiplying all αi by some positive factor.
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which gives rise to a quadratic programming. Standard technique would obtain a handy

closed-form solution to the optimal biases α.18 In contrast, we primarily focus on the general

implications of the contest design problem, instead of solving for closed-form solutions in

specific settings.

The reformulation enormously simplifies the design problem. By the equilibrium cor-

respondence (9), each contestant chooses his effort as if he responds merely to (pi, vi), his

own winning odds and prize valuation: The strategic linkages between contestants seem-

ingly dissolve when the winning probability distribution is treated as a design variable. This

approach insulates the designer from the distraction of the complex strategic interaction of

the contest game; instead, the reformulated optimization problem boils down to a simple

programming that allocates probability mass among contestants purely based on the profile

of their prize valuations.

3.3 A General Exclusion Principle

Recall that the contest designer, when setting α, can effectively exclude a contestant

by imposing zero weight on his entry, which discourages him from exerting positive effort.

We now explore the hidden dimension of the design problem: Which contestants should be

included in the optimal contest?

Define τ : N → N as a permutation of the set of players N ≡ {1, . . . , n}. In particular,

player i is replaced by player τ(i) in the rearrangement. With slight abuse of notation, let

us define τ(x) := (xτ(1), . . . , xτ(n)), τ(p) := (pτ(1), . . . , pτ(n)), and τ(v) := (vτ(1), . . . , vτ(n)).

Similarly, let τij(x) denote the permutation obtained by swapping contestants i and j. To

obtain more mileage, we impose the following condition on Λ(x,p,v).

Assumption 3 The contest designer’s objective Λ(x,p,v) satisfies the following properties:

i. for all permutations τ of N , Λ(x,p,v) = Λ
(
τ(x), τ(p), τ(v)

)
;

ii. if (pi, xi) = (0, 0) for some contestant i ∈ N , then Λ(x,p,v) ≤ Λ
(
x,p, τij(v)

)
for all

j ∈ N such that vj < vi;

iii. fixing p ≡ (p1, . . . , pn) and v ≡ (v1, . . . , vn), Λ(x,p,v) is strictly increasing in xi if

pi > 0.

Part (i) of the above assumption implies that the designer’s preference is anonymous: She

does not have ex ante preference over certain players. Part (ii) of the assumption indicates

that the prize value for a contestant is more likely to accrue to the designer’s benefit when

18The application of our optimization approach and the solutions to optimal biases in Tullock contest
settings are available from the authors upon request.
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he is active. The requirement is automatically satisfied in the simplest case in which the

objective function is independent of contestants’ prize valuations, e.g., in which the designer

maximizes total effort or the expected winner’s effort. Part (iii) states that the designer

would strictly benefit if an active player exerts more effort.

Part (iii) of Assumption 3 implies Assumption 2:19 Theorem 2 thus remains in place, and

headstarts are suboptimal for contest design under Assumption 3. Assumption 3 is by no

means restrictive, as all of the examples discussed in Section 2.3.2 satisfy the requirements.

We obtain the following.

Theorem 4 (Exclusion Principle) Suppose that Assumptions 1 and 3 are satisfied. If

p∗i = 0 for some i ∈ N in the optimum, then p∗j = 0 for all j ∈ N , with vj < vi.

By Theorem 4, exclusion in the optimum must be monotone: Whenever the designer

intends to exclude contestants, she targets the ex ante weakest. This result stands in contrast

to those obtained in previous studies. In an all-pay auction, Baye, Kovenock, and de Vries

(1993) show that a total-effort-maximizing contest designer may strategically exclude the

strongest contestant. In contrast, Fang (2002) demonstrates that the designer does not

have a strict incentive to exclude players from a lottery contest—i.e., h(xi) = xi. Both

studies assume total effort maximization and outright exclusion, while we allow for a general

objective function and an indirect exclusion approach, i.e., allowing the designer to bias the

contest to discourage certain contestants’ participation.

The monotone exclusion principle may compel one to conjecture that an ex ante stronger

contestant—i.e., one with a larger vi—would win with a (weakly) higher probability in the

optimum. However, this may not hold in general. We will elaborate in Section 4.

3.4 Optimal Contests: Maximizing Total Effort and the Expected

Winner’s Effort

We now apply our approach to two typical scenarios for contest design. First, we set

ψ and γ in the objective function (3) to zero, and consider the situation in which the

contest designer aims to maximize aggregate effort, i.e., Λ(x,p,v) =
∑n

i=1 xi. Second, we

consider the objective function (4), the maximization of the expected winner’s effort—i.e.,

Λ(x,p,v) =
∑n

i=1 pixi.

Maximizing Total Effort With slight abuse of notation, we denote, respectively, by

p∗ ≡ (p∗1, . . . , p
∗
n) and α∗ ≡ (α∗1, . . . , α

∗
n) the total-effort-maximizing winning probabilities

19To be more rigorous, we need to impose the condition that Λ(x,p,v) is weakly increasing in xi at pi = 0
for all i ∈ N .
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and the corresponding optimal biases. Consider a two-player contest with v1 ≥ v2. It is well

known in the literature that in a Tullock contest setting—i.e., h(xi) = (xi)
r—the optimum

fully balances the playing field, with p∗1 = p∗2 = 1
2
, for all r ∈ (0, 1]. This can be achieved

by setting α∗2 to (v1/v2)r with (v1/v2)r ≥ 1 and normalizing α∗1 to one. By the equilibrium

correspondence, the analysis can readily accommodate flexible contest technology h(·) and

multiple players. Recall that in the equilibrium,

xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
,∀ i ∈ N ,

which indicates that xi strictly increases with pi(1−pi). Note that pi (1− pi) is nonmonotone

in pi: It first increases and then drops, being maximized uniquely at pi = 1
2
. To put this

intuitively, one gives up when he faces a slim chance of winning, while he also slacks off

when he expects an easy win, which underpins the nonmonotone best-response function

in a standard contest game (Dixit, 1987). This observation implies immediately that the

total-effort-maximizing contest perfectly levels the playing field—i.e., p∗1 = p∗2 = 1/2—in a

two-player contest, regardless of h(·). This generalizes the conventional wisdom obtained in

previous studies. Moreover, the following proposition can be obtained.

Proposition 1 (Total-effort-maximizing Contests) Suppose that n ≥ 2, Assump-

tion 1 is satisfied, and the designer aims to maximize total effort. Then the following state-

ments hold:

i. The optimal contest allows for at least three active players if possible.

ii. The optimal contest does not allow any contestant to win with a probability more than

1/2, i.e., p∗i ≤ 1/2, ∀ i ∈ N , with equality if and only if n = 2.

The first part of Proposition 1 generalizes Franke, Kanzow, Leininger, and Schwartz

(2013, Theorem 4.6), and shows that a head-to-head competition is suboptimal whenever

a third contestant is available, regardless of the distribution of prize valuations. Suppose

otherwise that in a multiplayer contest only two players are kept active. Optimization

requires that they have equal chance to win, as noted above. Recall that xi strictly increases

with pi(1− pi), and pi(1− pi) is maximized when pi = 1
2
, with d

[
pi(1− pi)

]
/dpi

∣∣
pi=1/2

= 0.

With a simple additive objective function Λ(x,p,v) =
∑n

i=1 xi, the designer can be strictly

better off by adjusting contest rule α to award a third player a very small probability of

winning: In the new equilibrium, the third player contributes positive effort; the other two

would barely reduce their effort, because the marginal effect on pi(1− pi) is negligible.

The second part of Proposition 1 provides a key property of the optimum regarding the

winning probability distribution. The optimum precludes a “superstar,” in the sense that
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an individual contestant’s winning odds must be strictly less than the sum of the others’,

i.e., p∗i < 1/2, ∀ i ∈ N , whenever the contest involves three or more contestants. It is never

optimal to let contestant i win with a probability pi strictly more than 1/2. Suppose the

contrary. The designer, instead, can induce the same effort from contestant i by assigning

1−pi and elicit more effort from the others by allocating to them the saved probability mass

2pi − 1.

It is unclear, in the case of n ≥ 3, whether the optimal contest completely levels the

playing field—i.e., p∗i = 1/n—and whether an ex ante stronger contestant would necessarily

be handicapped more, i.e., a larger vi is associated with a smaller αi in the optimum. We

apply our approach to these classical questions in Section 4 and show that the conventional

wisdom does not universally hold.

Maximizing the Expected Winner’s Effort Next, we consider the maximization of the

expected winner’s effort. Unlike maximizing aggregate effort
∑n

i=1 xi, the objective function∑n
i=1 pixi is nonadditive in the contestant’s effort, because the winning probability pi is a

function of effort profile x and is factored in multiplicatively. Our approach is immune to

the nuance. Denote by p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) the winning probabilities in the optimal contest.

We obtain the following.

Proposition 2 (Optimal Contest that Maximizes the Expected Winner’s Effort)

Suppose that Assumption 1 is satisfied and the designer aims to maximize the expected win-

ner’s effort. Then only the two ex ante strongest contestants would remain active in the

optimal contest. Moreover, the ex ante stronger player always wins with a strictly higher

probability than the underdog, independent of the shape of g(·). That is, if v1 > v2, then

p∗∗1 > p∗∗2 > 0.20

By Proposition 2, the optimal contest must sufficiently preserve individual incentives

by including only the two most competitive contestants. The playing field is never fully

balanced, as the winning probability assignment is “assortative,” i.e., the top dog wins more

often. This stands in contrast to the optimum established in Proposition 1 under total effort

maximization for the case of n = 2.

The result can again be interpreted in light of the correspondence (9). Intuitively, max-

imizing the weighted sum
∑n

i=1 pixi requires that the probability mass be concentrated on

the minimal number of the most productive contestants, i.e., the two strongest contestants.

Further, suppose otherwise that the two active contestants win with equal chance. The de-

signer can be strictly better off by shifting a small amount of probability mass from p2 to p1.

Recall that xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
. Its impact on pi(1 − pi) fades away on the

margin, while a larger probability is attached to a higher effort: x1 > x2 because v1 > v2.

20It is straightforward to show that p∗∗1 = p∗∗2 = 1/2 if v1 = v2.
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4 Leveling the Playing Field: Reexamined

We now apply our approach to explore a classical question in the contest literature:

How should the balance of the playing field be optimally set to maximize total effort when

contestants are heterogeneous? The question can be examined in terms of either ex post

outcomes or ex ante contest rules. The former concerns how contestants’ winning odds

are ranked in the optimum with respect to their innate strength, while the latter explores

whether weaker contestants are favored vis-à-vis their stronger opponents. In Section 3.4,

we generalize the conventional wisdom in a two-player setting and obtain that the optimum

handicaps the stronger and equalizes winning odds regardless of the contest technology h(·).
In an n-player lottery contest, Franke, Kanzow, Leininger, and Schwartz (2013) show in a

numerical example that the optimal contest is biased in favor of weaker players—i.e., α∗i < α∗j
for vi > vj, and x∗i , x

∗
j > 0—although the playing field is not fully balanced—i.e., p∗i > p∗j for

vi > vj, and x∗i , x
∗
j > 0. Our approach allows us to examine this systematically.

4.1 Ranking of Winning Probabilities in the Optimum

Recall the function g(·), which is defined as the inverse of log
(
c′(x) · h(x)/h′(x)

)
. We

first obtain the following.

Proposition 3 (Winning Probabilities in Total-effort-maximizing Contests) Sup-

pose that Assumption 1 is satisfied and the designer aims to maximize total effort. Consider

a contest with n ≥ 3 players. For two arbitrary active contestants i, j ∈ N with vi > vj,

p∗i > p∗j if g(·) is a strictly convex function.

Proposition 3 predicts that for active contestants, a larger prize valuation ensures strictly

higher equilibrium winning odds in the optimum when the function g(·) is convex. A convex

g(·) is common. For instance, a Tullock contest with h(xi) = (xi)
r and a linear effort cost

leads to g(z) = r exp(z), which is evidently strictly convex.

The logic of Proposition 3 is straightforward in light of the fundamental correspondence:

xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
,∀ i ∈ N .

Obviously, xi is supermodular in (pi, vi) when g(·) is strictly convex in its arguments:

∂2xi/∂pi∂vi must be strictly positive because by Proposition 1, p∗i < 1/2 in the optimum.

The function g(·) depicts how a contestant’s effort choice takes into account prize value and

the prospect for his win: One steps up his effort when he expects a more rewarding prize

(i.e., increasing vi) or when he is more confident (i.e., increasing pi) for pi < 1/2. The super-

modularity implies that a brighter prospect for a win incentivizes a contestant more when he
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also benefits more from the prize. Total effort can be maximized only when the assignment

of p with respect to v is assortative, i.e., assigning larger equilibrium winning probability to

a contestant of larger prize valuation.

Analogously, the assignment is set to be reversed when the function turns concave. It

should be noted that g(·) cannot be globally concave. Recall that the function is the inverse

of log
(
c′(x) · h(x)/h′(x)

)
. For a contest technology h(·) that satisfies Assumption 1 and a

cost function c(x) with finite c′(0), log
(
c′(x) · h(x)/h′(x)

)
approaches negative infinity in

the neighborhood of zero, which precludes globally concave g(·). An exhaustive comparative

static of probability ranking is infeasible, because the property of g(·) remains elusive in

general.

We construct a parameterized setting to illustrate the impact of g(·) on the probability

series in the optimum. Assume a linear effort cost function c(x) = x, and parametrize the

contest technology h(·) by a variable σ ∈ (0, 1] as follows:

hσ(x) := exp

(∫ x

1

1

ζ−1
σ (t)

dt

)
,

where ζ−1
σ (t) is the inverse function of ζσ(·) given by

ζσ(z) :=


1
2
z if 0 < z < σ,

σ − σ2

2z
if σ ≤ z ≤ 2,

σ2

8
z + (σ − 1

2
σ2) if z > 2.

The expression of g(·), which we again index by σ, can be written as

gσ(z) = ζσ(ez) =


1
2
ez if z < log σ,

σ − σ2

2
e−z if log σ ≤ z ≤ log 2,

σ2

8
ez +

(
σ − 1

2
σ2
)

if z > log 2.

21

The function gσ(z) is strictly convex in z for z < log σ and z > log 2, and is strictly concave

in z for log σ ≤ z ≤ log 2.

Suppose that n = 10 and (v1, v2, . . . , v10) = (2.9, 2.8, . . . , 2.0). With a linear effort cost

function c(x) = x and the constructed contest technology hσ(·), contestant i’s first-order

21Alternatively, the same gσ(·) can be obtained by assuming the Tullock contest technology h(x) = xr, with

r ∈ (0, 1], and an effort cost function c(x) = r
∫ x
0

[eg
−1
σ (ω)/ω]dω. Our subsequent analysis would naturally

extend to this alternative setting and obtains comparative statics with respect to the property of the cost
function. It is straightforward to verify that the constructed effort cost function satisfies c(0) = 0, c′(x) > 0,
and c′′(x) ≥ 0 for all x > 0.
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(a) gσ(z) under different levels of σ (b) (p∗1, . . . , p
∗
10) under different levels of σ

Figure 1: gσ(z) and (p∗1, . . . , p
∗
10) under Different Levels of σ.

condition can now be rewritten as

pi(1− pi)vi =
hσ(xi)

h′σ(xi)
= ζ−1

σ (xi)⇒ xi = ζσ
(
pi(1− pi)vi

)
.

Note that pi(1− pi)vi < 3/4 < 1 in the example because vi < 3 for all i ∈ N ≡ {1, . . . , 10}.
This indicates that the region [0,∞) in the support of gσ(·) is irrelevant. The variable σ

therefore measures the concavity/convexity of the gσ(·) function in the relevant support

(−∞, 0), as Figure 1(a) depicts: gσ(·) is globally concave in the relevant support as σ ↘ 0;

it is globally convex in the relevant support as σ ↗ 1.

The profile of the optimal equilibrium probabilities (p∗1, . . . , p
∗
10) for different values of σ

are reported as follows:

σ p∗1 p∗2 p∗3 p∗4 p∗5 p∗6 p∗7 p∗8 p∗9 p∗10

0.1 0.0915 0.0931 0.0948 0.0966 0.0985 0.1005 0.1026 0.1049 0.1073 0.1099

0.3 0.1271 0.1293 0.1316 0.1340 0.1239 0.1082 0.0912 0.0726 0.0522 0.0299

0.5 0.1668 0.1549 0.1421 0.1283 0.1134 0.0973 0.0798 0.0607 0.0398 0.0168

In the case of σ = 0.5, p∗i > p∗j whenever vi > vj, as predicted by Proposition 3. In

contrast, with σ = 0.1, gσ(·) is concave in the relevant support and the ranking is entirely

reversed, which implies that the optimal contest severely handicaps stronger contestants,

such that they are less likely to win. The logic that underpins Proposition 3 can be flipped

to interpret this observation. With a concave g(·), an increase in vi reduces the marginal

impact of pi on xi. A contestant can less effectively be motivated by an improvement in
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the prospect of a win when he has a higher valuation for the prize. This suggests that a

lower winning probability should be assigned to a contestant with a higher prize valuation.

The ranking is nonmonotone in the intermediate case of σ = 0.3. As Figure 1(b) illustrates,

p∗i strictly increases with i first and then decreases, with player 4 being the most probable

winner.

4.2 Ranking of Multiplicative Biases in the Optimum

In this part, we examine the optimal contest rule—i.e., the multiplicative biases α∗—that

maximizes total effort. Assume a Tullock contest with n ≥ 3, h(xi) = (xi)
r, r ∈ (0, 1], and

a linear effort cost function c(xi) = xi. The setting streamlines our analysis for two reasons.

First, as stated above, the fundamental equilibrium correspondence under a Tullock contest

setting can be simplified as

xi = rpi(1− pi)vi, ∀ i ∈ N ,

which allows for a closed-form solution of the optimal bias rule α∗, as the optimization prob-

lem yields a simple quadratic programming. Second, the total effort of the contest can be

rewritten as
∑n

i=1 xi = r
∑n

i=1 pi(1−pi)vi, which implies immediately that the optimal prob-

ability distribution p∗, or the winning probability ranking in the optimum, is independent of

the parameter r. This allows us to focus on the property of optimal contest rule and enables

lucid comparative statics with respect to r. The following fully characterizes the optimum.

Proposition 4 (Total-effort-maximizing Tullock Contests) Assume without loss of

generality that contestants are ordered such that v1 ≥ v2 ≥ . . . ≥ vn > 0, h(xi) = (xi)
r, with

r ∈ (0, 1], and c(xi) = xi. Suppose that the contest designer aims to maximize total effort.

Then the equilibrium winning probabilities p∗ ≡ (p∗1, . . . , p
∗
n) are given by

p∗i =


1
2

(
1− 1

vi
× κ−2∑κ

j=1
1
vj

)
if i ∈ {1, . . . , κ},

0 if i ∈ N \ {1, . . . , κ},
(12)

where κ is given by

κ := max

m = 2, . . . , n

∣∣∣∣∣ m− 2∑m
j=1

1
vj

< vm

 .

Moreover, the corresponding weights, denoted by α∗ ≡ (α∗1, . . . , α
∗
n), that induce p∗ ≡

(p∗1, . . . , p
∗
n) are given by

α∗i =


(p∗i )

1−r[
(1−p∗i )vi

]r if p∗i > 0,

0 if p∗i = 0.
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Proposition 4 allows us to rank α∗ ≡ (α∗1, . . . , α
∗
n) with respect to the parameter r.

Proposition 5 (Comparative Statics of the Optimal Biases with Respect to r)

Assume without loss of generality that contestants are ordered such that v1 ≥ v2 ≥ . . . ≥
vn > 0, h(xi) = (xi)

r, with r ∈ (0, 1], and c(xi) = xi. Suppose that the contest designer aims

to maximize total effort. Then the following holds:

i. Suppose that contestants i and j remain active in the total-effort-maximizing contest

(i.e., i, j ≤ κ). If vi > vj, then there exists a cutoff rij ∈ (0, 1) such that α∗i ≷ α∗j if

r ≶ rij.

ii. Define an upper bound rmax := max{i<j≤κ}{rij} and a lower bound rmin := min{i<j≤κ}{rij}.
α∗m is decreasing in m ∈ {1, . . . , κ} when r ≤ rmin, and is increasing when r ≥ rmax.

For r ∈ (rmin, rmax), the optimal biases α∗ are nonmonotone.

Proposition 5 indicates that the usual leveling-the-playing-field principle does not hold

in general. It first states that for a given pair of active contestants, the optimal bias rule

can favor either depending on the size of r. More generally, Proposition 5(ii) identifies two

cutoffs. When the contest sufficiently rewards more effort, i.e., r ≥ rmax, a larger weight

is assigned to a weaker active player, i.e., one with a lower prize valuation, in which case

the conventional wisdom remains. In contrast, when r falls below a lower bound rmin, the

prediction is entirely reversed, and the designer further upsets the balance of the contest in

the optimum by favoring stronger contestants, i.e., α∗m is decreasing in m.22,23 When r falls

in the intermediate range (rmin, rmax), the ranking of α∗i is no longer monotone.

22Ample evidence can be found in practice for the practice of reverse handicapping in favor of ex ante
stronger contenders. Consider, for instance, the widespread industry policy that gives unfair advantage to
large organizations to promote “national champions” for domestic dominance and international preeminence;
e.g., the dirigiste policy in France from 1945 to 1947 and Korea’s industrialization programs. Alternatively,
the financial fair-play regulation (FFP) in European football (soccer) has been broadly criticized for the
anticompetition role it played in perpetuating the dominance of “big clubs”: The rule requires that European
football clubs balance their books and not spend more than the income they generate, which solidifies an
incumbent “big” club’s advantage in attracting talent, given the superior revenue it receives based on its
past track record. Möller (2012) formally studies the trade-off between competitive balance and incentives
in a dynamic contest in which one’s early success improves his competence in future. He shows that an
optimally designed contest may maximize the heterogeneity between players in terms of productivity along
the dynamics.

23Soccer is broadly viewed as the least predictable major sporting discipline. Ben-Naim, Vazquez, and
Redner (2007) and Anderson and Sally (2013) provide extensive empirical evidence that soccer matches
produced “upsets”—i.e., pregame underdogs overcoming favorites—more frequently than other sports, which
alludes to a relatively more significant role played by luck in soccer matches vis-à-vis skill or effort. Our result
can thus arguably shed light on the European FFP regulation that advantages big clubs (see Footnote 22).
This stands in contrast to various measures in the NBA—e.g., the draft lottery and salary cap—that maintain
a level playing field. Anderson and Sally, among others, show that the results of basketball matches are the
most predictable based on teams’ quality (see https://knowledge.wharton.upenn.edu/article/sports-by-the-
numbers-predicting-winners-and-losers/).
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We construct a numerical example to illustrate the comparative statics. Again, suppose

that n = 10 and (v1, v2, . . . , v10) = (2.9, 2.8, . . . , 2.0). To ease comparison with respect to

r, we normalize the sum of optimal weights established by Proposition 4 to one and define

α′i ≡ α∗i /(
∑n

j=1 α
∗
j ) for all i ∈ N ≡ {1, . . . , 10}.24 The optimal bias rule for a given r can

then be identified:

r α′1 α′2 α′3 α′4 α′5 α′6 α′7 α′8 α′9 α′10

1.0 0.0903 0.0922 0.0942 0.0963 0.0984 0.1007 0.1031 0.1056 0.1082 0.1110

0.9 0.0979 0.0990 0.1001 0.1010 0.1018 0.1023 0.1025 0.1019 0.0998 0.0937

0.4 0.1364 0.1316 0.1260 0.1196 0.1121 0.1032 0.0925 0.0792 0.0621 0.0374

We illustrate the three cases in Figure 2. Monotone rankings of (α′1, . . . , α
′
10) arise in the

case of both a large r (r = 1) and a small r (r = 0.4): The former exemplifies the conventional

wisdom of leveling the playing field, while the latter entirely contradicts that. In the case

of intermediate r (r = 0.9), contestant 7, with a prize valuation 2.3, is favored the most by

the designer [see Figure 2(b)]: The optimal contest levels the playing field for contestants

1-7, but discounts the output of the weakest three. The second panel of Figure 2 depicts the

case of nonmonotone ranking. The curve that traces α′m with respect to contestants’ prize

valuation vm is inverted U-shaped.

The optimal bias rule subtly depends on the parameter r. The comparative statics

can again be interpreted in light of the fundamental correspondence and our optimization

approach. As stated above, p∗, the winning probability distribution in the optimum, remains

constant regardless of r. Imagine that r decreases. A higher effort—contributed by a stronger

contestant—can be less effectively converted into higher winning odds, which narrows the

spread in p∗ and, in turn, depletes contestants’ effort incentives. To counteract this effect

and restore the required distribution p∗, a stronger contestant must be handicapped less

severely because a larger αi imposed on a stronger contestant enlarges the spread in the

distribution of winning probabilities for any given effort profile.

More intuitively, recall the usual rationale for leveling the playing field: Preferential

treatment motivates the underdog, which in turn prevents the favorite from slacking off.

This logic can be cast into doubt when r decreases. A smaller r diminishes all contestants’

incentives. On the one hand, a weaker contestant would respond less sensitively in his effort

choice to the extra favor. On the other hand, a smaller r erodes a strong contestant’s

advantage because his higher effort is less effective for securing larger winning odds, which

prevents him from slacking off regardless of the contest rule. When handicapping strong

contestants, both the positive incentive effect for underdogs and the disciplinary effect on

24The variable α′i can be interpreted as contestant i’s winning probabilities if all contestants exert the
same amount of effort.
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(a) r = 1 (b) r = 0.9

(c) r = 0.4

Figure 2: Optimal Total-effort-maximizing Bias Rule under Different Levels of r.

the favorite diminish. The optimum could favor favorites more to preserve their momentum.

5 Concluding Remarks

In this paper, we develop a novel optimization approach to study the design of biased

contests. A designer imposes identity-dependent preferential treatments on heterogeneous

contestants. Based on a fundamental correspondence derived from the equilibrium condition,

we characterize the general properties of the optimal contest rule in a substantially gener-

alized setting without solving for the equilibrium explicitly. The analysis enabled by the

approach generates useful theoretical implications that contrast starkly with those obtained

in the restricted settings considered in previous studies. In particular, we demonstrate that
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the conventional wisdom of leveling the playing field may not hold in general. The contest

rule could favor stronger contestants vis-à-vis their weaker opponents.

Our approach substantially eases the analysis of optimal contest design and can be applied

to a broad array of scenarios. Fu and Wu (2019c) extend this approach to the setting of an

all-pay auction and reexamine the classical issue of comparing all-pay auctions and lottery

contests under general design objectives. The approach can also be applied in dynamic

settings. For instance, Fu and Wu (2019b) consider a two-stage contest in which the designer

assigns individualized weights to contestants’ second-stage effort entries based on their first-

stage ranking.
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Appendix A Microfoundation

We interpret the microeconomic substance of the generalized lottery contest model from

two perspectives.

Noisy Ranking Clark and Riis (1996) and Jia (2008) show that a generalized lottery

contest is underpinned by a unique noisy ranking system. Imagine that contestants are

evaluated through a set of noisy signals of their performance `is. Following the discrete

choice framework of McFadden (1973, 1974),25 the noisy signal `i is assumed to be described

by

log `i = log fi(xi) + εi,∀ i ∈ N ,

where the deterministic and strictly increasing production function fi(·): R+ → R+ measures

the output of contestant i’s effort xi,
26 and the additive noise term εi reflects the randomness

in the production process or the imperfection of the measurement and evaluation process.

Idiosyncratic noises ε := {εi, i ∈ N} are independently and identically distributed, being

drawn from a type I extreme-value (maximum) distribution, with a cumulative distribution

function

G(εi) = e−e
−εi , εi ∈ (−∞,+∞), ∀ i ∈ N .

A contestant i prevails if he outperforms all others: This noisy-ranking tournament boils

down to a generalized lottery contest, because

Pr

(
`i > max

j 6=i
`j

)
=

fi(xi)∑n
j=1 fj(xj)

.

Isomorphism to R&D Contests Baye and Hoppe (2003) demonstrate the isomorphism

between a generalized lottery contest, the research tournament model proposed by Fullerton

and McAfee (1999), and the patent race model suggested by Loury (1979) and Dasgupta and

Stiglitz (1980). This provides a more intuitive microeconomic underpinning for the model.

To illustrate the equivalence, we focus on the research tournament model of Fullerton and

McAfee (1999). A sponsor—who is interested in an innovative technology—invites n ≥ 2

R&D firms to carry out the project. Firms develop the technology and submit their products

to the designer. The entry of the highest quality wins and its developer is awarded a prize,

such as a procurement contract. Each firm i’s valuation of the prize is given by vi > 0.

Each firm i decides on its own input xi ≥ 0 in developing the technology. The quality

25The framework of McFadden’s discrete choice model is further introduced and studied in various respects
by works collected in Manski and McFadden (1981).

26Define log fi(xi) = −∞ if fi(xi) = 0.
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qi of firm i’s product is randomly drawn from a distribution with cumulative distribution

function [Γ(qi)]
fi(xi). The function Γ(·) is a continuous cumulative distribution function on

a support [q, q], with q > q. By Fullerton and McAfee (1999) and Baye and Hoppe (2003),

the term fi(xi)—which increases with xi—can intuitively be interpreted as the number of

research ideas generated in developing the product and indicates the firm’s research capacity:

Each research idea allows the firm to produce a prototype, with its quality being drawn from

the distribution function Γ(·). A firm simply presents its best prototype to the sponsor as

its entry, and the quality of its entry thus follows the distribution function [Γ(qi)]
fi(xi): The

more ideas a firm generates, the more likely a higher qi can be realized, and the more likely

the firm can leapfrog its competitors. As pointed out by Baye and Hoppe (2003) and Fu and

Lu (2012), a firm i wins the prize with a probability

Pr

(
qi > max

j 6=i
qj

)
=

fi(xi)∑n
j=1 fj(xj)

.

A similar equivalence can be established between a generalized lottery contest model and

the “first past the post” patent race model of Loury (1979) and Dasgupta and Stiglitz (1980),

in which a firm secures a rent if it makes a scientific discovery earlier than its competitors. Fu

and Lu (2012) further reveal the underlying statistical linkage between these R&D contests

and the generalized lottery contest model (1).
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Appendix B Proofs

Proof of Theorem 1

Proof. Note that xi = 0 is a strictly dominant strategy for contestant i if fi(·) is a constant.

Therefore, it suffices to prove the theorem for the case in which fi(·) satisfies f ′i(xi) > 0,

f ′′i (xi) ≤ 0 and fi(0) ≥ 0 for all i ∈ N .

For notational convenience, define yi := fi(xi), δi := fi(0), f̃i(xi) := fi(xi) − δi, and

λi(yi) := c
(
f̃−1
i (yi − δi)

)
/vi. It follows immediately that c(xi) = λi(yi) · vi. Moreover, we

have that λ′i > 0 and λ′′i ≥ 0. The expected payoff of contestant i ∈ N choosing yi ≥ δi is

equal to [
yi∑n
j=1 yj

− λi(yi)

]
· vi.

It remains to show that there exists a unique equilibrium y∗ ≡ (y∗1, . . . , y
∗
n) that satisfies

y∗i ≥ δi for all i ∈ N . Let s :=
∑n

j=1 yj and δ :=
∑n

j=1 δj. It is clear that s ≥ δ. The

first-order condition of the above expected utility with respect to yi yields the following:

s− yi
s2
− λ′i(yi) ≤ 0, with equality if yi > δi.

Fixing s, let us define yi(s) as the following:

yi(s) :=

δi if s2λ′i(δi)− s+ δi ≥ 0,

The unique solution to s− yi = s2λ′i(yi) otherwise.
(13)

It is straightforward to verify that yi(s) is well defined and continuous in s ∈ [δi,∞]. More-

over, we must have that yi(s) ∈ (δi, s) if s2λ′i(δi)− s+ δi < 0.

Suppose that there exists an interval of s such that yi(s) > δi. It follows immediately

from the implicit function theorem that

y′i(s) =
1− 2sλ′i(yi)

1 + s2λ′′i (yi)
=

2yi(s)− s[
1 + s2λ′′i (yi)

]
s
, (14)

where the second equality follows from s−yi = s2λ′i(yi). Therefore, yi(s) is strictly decreasing

in this interval if 2yi < s and strictly increasing otherwise. By Equation (13), the latter case

occurs if and only if

s− 1

2
s > s2λ′i

(
s

2

)
⇔ 2sλ′i

(
s

2

)
< 1.

Note that 2sλ′i
(
s
2

)
is strictly increasing in s, which implies that there exists at most one
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solution to 2sλ′i
(
s
2

)
= 1. Denote the solution by ŝi whenever it exists.

Next, we denote the two different real number solutions of s2λ′i(δi)− s+ δi = 0 by s†i and

s††i respectively, with s†i < s††i , whenever they exist. The above analysis, together with the

fact that the expression s2λ′i(δi)− s+ δi in Equation (13) is quadratic in s, implies that the

function yi(s) must fall into one of the following four cases:

Case I: There exist no different real number solutions of s2λ′i(δi)−s+δi = 0 for s ∈ [δ,∞].

Then we must have that s2λ′i(δi)−s+δi ≥ 0 for all s ≥ δ, which in turn implies that yi(s) = δi

for all s ≥ δ by Equation (13). To slightly abuse the notation, we let s††i := δ for this case.

Case II: s†i ≤ δ ≤ s††i and yi(δ) ≤ 1
2
δ. Then yi(s) is strictly decreasing in s for s ∈ [δ, s††i ],

and yi(s) = δi for s ∈ [s††i ,∞].

Case III: s†i ≤ δ ≤ s††i and yi(δ) >
1
2
δ. It can be verified that δ < ŝi < s††i . Therefore,

yi(s) is strictly increasing in s for s ∈ [δ, ŝi]; is strictly decreasing in s for s ∈ [ŝi, s
††
i ]; and

yi(s) = δi for s ∈ [s††i ,∞].

Case IV: δ < s†i < s††i . It can be verified that s†i < ŝi < s††i . Moreover, yi(s) is strictly

increasing in s for s ∈ [s†i , ŝi]; is strictly decreasing in s for s ∈ [ŝi, s
††
i ]; and yi(s) = δi for

s ∈ [δ, s†i ] ∪ [s††i ,∞].

The four cases are depicted in Figure 3 graphically. For Case I and Case II, we define

si := δ; for Case III and Case IV, we define si := ŝi ≥ δ. It is straightforward to verify

that yi(s) >
1
2
s holds if s < si for all four cases. Without loss of generality, we order the

contestants such that

s1 ≥ s2 ≥ . . . ≥ sn ≥ δ.

Define Y (s) :=
∑n

i=1 yi(s) − s. It remains to show that Y (s) = 0 has a unique positive

solution. First, note that no solution exists for s < s2, because

Y (s) :=
n∑
i=1

yi(s)− s ≥ y1(s) + y2(s)− s > 1

2
s+

1

2
s− s = 0, for s < s2.

Next, we claim that Y (s) is strictly decreasing in s for s ≥ s2. Clearly, Y (s) is strictly

decreasing in s for s ≥ s1. Moreover, for s ∈ [s2, s1], Y (s) can be rewritten as

Y (s) =
n∑
i=2

yi(s)︸ ︷︷ ︸
first term

+
[
y1(s)− s

]︸ ︷︷ ︸
second term

.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3: yi(s).

Because s ≥ s2 ≥ . . . ≥ sn, the first term is weakly decreasing in s. Taking the derivative of

the second term with respect to s yields

y′1(s)− 1 =
2y1(s)− s[

1 + s2λ′′1
(
y1(s)

)]
s
− 1 ≤ 2y1(s)− s

s
− 1 =

2

s

[
y1(s)− s

]
< 0,

where the first equality follows from Equation (14); the first inequality follows from λ′′i ≥
0 and y1(s) ≥ s

2
, and the second inequality follows from yi(s) < s [see Equation (13)].

Therefore, the second term is strictly decreasing in s, which in turn implies that Y (s) is

strictly decreasing for s ∈ [s2,∞].

It is straightforward to see that for all four cases, we have that yi(s) = δi for s ≥ s††i . Let
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s†† := s2 +
∑n

i=1 s
††
i +

∑n
i=1 δi. It is clear that s†† ≥ s2. Moreover, we have that

Y (s††) =
n∑
i=1

yi(s
††)− s†† =

n∑
i=1

δi −

s2 +
n∑
i=1

s††i +
n∑
i=1

δi

 = −s2 −
n∑
i=1

s††i ≤ 0.

Therefore, there exists a unique positive solution to Y (s) = 0 for s ∈ [s2, s
††]. This completes

the proof.

Proof of Theorem 2

Proof. The analysis for the case x∗t > 0 is provided in the main text, and it suffices to prove

the theorem for the case x∗t = 0. Because β∗t > 0, we must have p∗t > 0. If p∗t = 1, then we

must have x∗ = 0. Clearly, the equilibrium outcome (i.e., x∗ and p∗) can be replicated by

the following contest rule with zero headstarts:

(αi, βi) :=

{
(1, 0) for i = t,

(0, 0) for i 6= t.

Therefore, it remains to focus on the case in which p∗t ∈ (0, 1). Denote by x†† the unique

solution to the following equation:

p∗t (1− p∗t )vt = c′(x††) · h(x††)

h′(x††)
.

Note that the left-hand side of the above equation is strictly positive. Therefore, x†† >

0 = x∗t . Consider the following contest rule with weights α̂ ≡ (α̂1, . . . , α̂n) and headstarts

β̂ ≡ (β̂1, . . . , β̂n) such that

(
α̂i, β̂i

)
:=


(
α∗t h(x∗t )+β∗t

h(x††)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

Denote the equilibrium effort profile and winning probabilities under the alternative contest

rule (α̂, β̂) by x̂∗ ≡ (x̂∗1, . . . , x̂
∗
n) and p̂∗ ≡ (p̂∗1, . . . , p̂

∗
n), respectively. It can be verified that

x̂∗i =

{
x†† for i = t,

x∗i for i 6= t.

Moreover, we have that p̂∗i = p∗i for all i ∈ N because α̂t · h(x††) + β̂t = α∗t · h(x∗t ) + β∗t
by construction. Therefore, the contest designer’s payoff under (α̂, β̂) is weakly higher than

that under (α∗,β∗) by Assumption 2. This completes the proof.
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Proof of Theorem 3

Proof. Part (i) of the theorem is trivial, and it remains to show part (ii). It is clear that

xi = 0 is a strictly dominant strategy if αi = 0. For (pi, pj) > (0, 0), we must have (xi, xj) >

(0, 0). Therefore, the following first-order conditions must be satisfied by Equation (9):

xi = g
(

log(pi
(
1− pi)

)
+ log(vi)

)
,

xj = g
(

log(pj
(
1− pj)

)
+ log(vj)

)
.

Note that Equation (1) implies that

pi
pj

=

αi·h(xi)∑n
k=1 αk·h(xk)

αj ·h(xj)∑n
k=1 αk·h(xk)

=
αi · h(xi)

αj · h(xj)
.

Combining the above conditions, we can obtain that

αi
αj

=
pi/h(xi)

pj/h(xj)
=

pi

h

(
g
(

log(pi(1−pi))+log(vi)
))

pj

h

(
g
(

log(pj(1−pj))+log(vj)
)) .

The last equation clearly holds for the set of weights specified in Equation (A4). This

completes the proof.

Proof of Theorem 4

Proof. With slight abuse of notation, let us define x(pk, vk) := g
(

log(pk
(
1− pk)

)
+ log(vk)

)
.

Then the equilibrium effort xk in Equation (9) can be written as x(pk, vk) for all k ∈
N . Define x(p,v) :=

(
x(p1, v1), . . . , x(pn, vn)

)
. It follows immediately that τ

(
x(p,v)

)
=

x
(
τ(p), τ(v)

)
. Moreover, Equation (9) implies that x(0, v) = 0 for all v > 0.

Suppose, to the contrary, that there exists some contestant j ∈ N with vj < vi such that

p∗i = 0 < p∗j . Then we can obtain

Λ
(
x(p∗,v),p∗,v

)
≤ Λ

(
x(p∗,v),p∗, τij(v)

)
= Λ

(
τij
(
x(p∗,v)

)
, τij(p

∗),v
)

= Λ
(
x
(
τij(p

∗), τij(v)
)
, τij(p

∗),v
)

< Λ
(
x
(
τij(p

∗),v
)
, τij(p

∗),v
)
.
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The first inequality follows from x(p∗i , vi) = 0 and part (ii) of Assumption 3; the first equality

follows from part (i) of Assumption 3 and the fact that τij
(
τij(v)

)
= v; the second equality

follows from τij
(
x(p∗,v)

)
= x

(
τij(p

∗), τij(v)
)
; and the last strict inequality follows from

x(p∗i , vi) = x(p∗i , vj) = 0, x(p∗j , vj) < x(p∗j , vi), the postulated p∗j > 0, and part (iii) of

Assumption 3. Therefore, the contest designer’s payoff under the optimal vector of winning

probabilities p∗ is strictly lower than that under τij(p
∗), which is a contradiction. This

completes the proof.

Proof of Proposition 1

Proof. It is obvious that p∗1 = p∗2 = 1
2

from Equation (9) when n = 2, and it remains to

prove the result for the case n ≥ 3. We first prove part (i) of the proposition. Suppose,

to the contrary, that only two players remain active in the optimal contest. It is clear

that p∗1 = p∗2 = 1
2

in the optimum. Consider the following profile of equilibrium winning

probabilities p = (1
2
, 1

2
− ε, ε, 0, . . . , 0). It can be verified that the total effort under p is equal

to

Λ(x,p,v) = g

(
log(

1

4
) + log(v1)

)
+g

(
log(

1

4
− ε2) + log(v2)

)
+g
((

log(ε(1− ε)
)

+ log(v3)
)
.

Simple algebra shows that ∂Λ/∂ε > 0 when ε is sufficiently small. Therefore, at least three

players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗i ≥ 1
2

for some i ∈ N . If

p∗i >
1
2
, then the contest designer can assign probability 1−p∗i to contestant i and probability

p∗j +(2p∗i −1) to an arbitrary contestant j 6= i. Because at least three players remain active in

the optimum, we must have p∗i +p
∗
j < 1. This in turn implies that |p∗j+(2p∗i−1)− 1

2
| < |p∗j− 1

2
|,

and thus contestant j’s effort strictly increases. Furthermore, it follows from Equation (9)

that contestant i’s effort remains the same. Therefore, the total effort strictly increases after

the adjustment. If p∗i = 1
2
, then there exists an active player j ∈ N such that pj ∈ (0, 1

2
),

because at least three players remain active in the optimum. In such a scenario, the designer

can increase the total effort by reducing p∗i by a sufficiently small amount and increasing p∗j
by the same amount. This completes the proof.

Proof of Proposition 2

Proof. It is useful to first prove the following intermediate result.

Lemma 1 Consider a contest with three players who are indexed by i, j, and k. Suppose

that the contest designer aims to maximize the expected winner’s effort. Then setting pi =

pj = pk = 1
3

is suboptimal.
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Proof. Without loss of generality, we assume that vi ≥ vj ≥ vk. The difference between the

expected winner’s effort under (pi, pj, pk) = (1
2
, 1

2
, 0) and that under (pi, pj, pk) = (1

3
, 1

3
, 1

3
)

can be derived as1

2
g

(
log

(
1

4

)
+ log(vi)

)
+

1

2
g

(
log

(
1

4

)
+ log(vj)

)
−

1

3
g

(
log

(
2

9

)
+ log(vi)

)
+

1

3
g

(
log

(
2

9

)
+ log(vj)

)
+

1

3
g

(
log

(
2

9

)
+ log(vk)

)
>

1

6

g(log

(
2

9

)
+ log(vi)

)
− g

(
log

(
2

9

)
+ log(vj)

)
≥ 0,

where the strict inequality follows from 1
4
> 2

9
, vj ≥ vk, and the monotonicity of g(·).

Therefore, setting pi = pj = pk = 1
3

is suboptimal. This completes the proof.

Now we can prove the proposition. Suppose, to the contrary, that three or more players

remain active in the optimal contest. Then there exist i, j, k ∈ N such that p∗∗i ≥ p∗∗j > 0

and p∗∗i ≥ p∗∗k > 0. Lemma 1 implies that min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1. Without loss of

generality, we assume that vj ≥ vk.

Suppose that the contest designer assigns probability p∗∗jk := p∗∗j + p∗∗k to player j and 0

to player k, and does not change the equilibrium winning probability of all other players.

Then the difference between the expected winner’s effort under the new profile of winning

probabilities and that under p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) can be derived as

(p∗∗j + p∗∗k )g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
−

[
p∗∗j g

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)
+ p∗∗k g

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]

= p∗∗j

[
g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− g

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)]

+ p∗∗k

[
g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− g

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]
> 0,

where the inequality follows from min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1, vj ≥ vk, and the mono-

tonicity of g(·). A contradiction. Therefore, only two contestants would remain active in the
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optimal contest. Moreover, they must be the two ex ante strongest players by Theorem 4.

It remains to show that the ex ante stronger player always wins with a strictly higher

probability than the underdog. Suppose, to the contrary, that v1 > v2 and 0 < p∗∗1 ≤ p∗∗2 ,

with p∗∗1 + p∗∗2 = 1. We consider the following two cases:

Case I: p∗∗1 < p∗∗2 . Then the designer can increase the expected winner’s effort by assigning

probability p∗∗1 to player 2 and p∗∗2 to player 1. This would lead to a change in the expected

winner’s effort that amounts to[
p∗∗1 g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)
+ p∗∗2 g

(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)]
−
[
p∗∗1 g

(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)
+ p∗∗2 g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)]
= (p∗∗2 − p∗∗1 )

[
g
(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)
− g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)]
> 0,

which is a contradiction.

Case II: p∗∗1 = p∗∗2 = 1
2
. Let the designer assign winning probability 1

2
+ ε to player 1 and

1
2
− ε to player 2. The adjustment leads to a change in the expected winner’s effort that

amounts to

Ξ(ε) :=

(1

2
+ ε

)
g

(
log

(
1

4
− ε2

)
+ log(v1)

)
+

(
1

2
− ε
)
g

(
log

(
1

4
− ε2

)
+ log(v2)

)
− 1

2

g(log

(
1

4

)
+ log(v1)

)
+ g

(
log

(
1

4

)
+ log(v2)

) .
It is straightforward to verify that Ξ(0) = 0 and Ξ′(0) = g

(
log
(
v1
4

))
− g

(
log
(
v2
4

))
> 0.

Therefore, Ξ(ε) > 0 for sufficiently small ε > 0, which is again a contradiction. This

completes the proof.

Proof of Proposition 3

Proof. Recall that Proposition 1 states that p∗i , p
∗
j <

1
2
, ∀ i, j ∈ N . Suppose, to the contrary,

that vi > vj and p∗i ≤ p∗j . We consider the following two cases:

Case I: p∗i < p∗j . Let the contest designer assign probability p∗j to player i and p∗i to player

j, and not change the equilibrium winning probability of all other players. Define Ωk1k2 :=

log(p∗k1

(
1− p∗k1)

)
+ log(vk2) for k1, k2 ∈ {i, j}. It can be verified that Ωii,Ωjj ∈ (Ωij,Ωji)
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and Ωii + Ωjj = Ωij + Ωji. Furthermore, the difference between the total effort under the

alternative profile of winning probabilities and that under p∗ ≡ (p∗1, . . . , p
∗
n) is equal to[

g
(
Ωij

)
+ g

(
Ωji

)]
−
[
g (Ωii) + g

(
Ωjj

)]
> 0,

where the strict inequality follows from Ωii,Ωjj ∈ (Ωij,Ωji), Ωii + Ωjj = Ωij + Ωji, and the

strict convexity of g(·). A contradiction.

Case II: p∗i = p∗j . Let the contest designer assign probability p∗i + ε to player i and p∗j − ε
to player j, and not change the equilibrium winning probability of all other players. It can

be verified that such adjustment generates strictly more total effort to the designer for a

sufficiently small ε > 0. This completes the proof.

Proof of Proposition 4

Proof. The proof follows from Theorems 3 and 4, and the fact that the total effort

r
∑n

i=1 pi(1− pi)vi is quadratic in pi for all i ∈ N . It is omitted for brevity.

Proof of Proposition 5

Proof. Part (ii) of the proposition follows directly from part (i), and it suffices to prove

part (i). With slight abuse of notation, we add r into αi and αj to emphasize the fact

that the optimal weights α∗ ≡ (α∗1, . . . , α
∗
n) depend on the bidding efficiency r. Note that

p∗ ≡ (p∗1, . . . , p
∗
n) and κ are independent of r by Proposition 4. Moreover, we have that

T (r) := log

(
α∗i (r)

α∗j (r)

)
= (1− r) log

(
p∗i
p∗j

)
− r log

(
1− p∗i
1− p∗j

)
− r log

(
vi
vj

)
.

Clearly, T (r) is linear in r, and T (r) ≷ 0 is equivalent to α∗i (r) ≷ α∗j (r). Note that

lim
r↘0
T (r) = log

(
p∗i
p∗j

)
> 0,

and

T (1) = − log

(
1− p∗i
1− p∗j

× vi
vj

)
= − log

vi + κ−2∑κ
s=1

1
vs

vj + κ−2∑κ
s=1

1
vs

 < 0,

where the second equality follows from Equation (12). Therefore, there exists a unique cutoff

rij ∈ (0, 1) such that α∗i (r) ≷ α∗j (r) if r ≶ rij. This completes the proof.
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On the Optimal Design of Biased Contests

ONLINE APPENDIX

(Not Intended for Publication)

Qiang Fu∗ Zenan Wu†

We assume in the main text that contestants are endowed with the same contest technol-

ogy h(·) and effort cost function c(·). In Section 2, we demonstrate that our baseline analysis

would be immune to a variation in which each contestant bears an effort cost c(xi)/di. In

this online appendix, we show that many of our results do not depend on this modeling

specification.

We now allow the heterogeneity in contestants’ contest technologies and effort cost func-

tions to be more generally modeled. Let one’s impact function take the form

fi (xi;αi, βi) = αi · hi (xi) + βi,

and effort cost function be ci(xi), where hi(·) and ci(·) satisfy the following standard regu-

larity conditions.

Assumption A1 (Concave Contest Technology and Convex Effort Cost Func-

tion) The contest technology hi(·) and effort cost function ci(·) are assumed to have the

following properties:

i. hi(·) is twice differentiable, with hi(0) = 0, h′i(x) > 0, and h′′i (x) ≤ 0 for all x > 0;

ii. ci(·) is twice differentiable, with ci(0) = 0, c′i(x) > 0, and c′′i (x) ≥ 0 for all x > 0.

Theorem 1 in our baseline analysis proves the existence and uniqueness of pure-strategy

equilibrium in a regular concave contest, which is established assuming a general concave
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impact function fi(·). This result obviously would not vary when the cost function is het-

erogeneous. To see this, define ĉi := ci(xi), ĉ := (ĉ1 . . . , ĉn), and f̂i(ĉi) := fi(c
−1
i (ĉi)); each

contestant equivalently maximizes an expected payoff

π̂i(ĉ ) :=
f̂i(ĉi)∑n
j=1 f̂j(ĉj)

vi − ĉi.

The transformation leads to a regular concave contest that satisfies the requirements of

Definition 1, and Theorem 1 naturally extends.

Next, we show that Theorems 2-3 and Propositions 1-2 would also remain qualitatively

unchanged. We first obtain the following.

Theorem A1 (Suboptimality of Headstart with Heterogeneous Contest Tech-

nologies and Cost Functions) Suppose that Assumptions 2 and A1 are satisfied. The

optimum can always be achieved by choosing multiplicative biases α only and setting head-

starts β to zero.

Proof. We follow the notation in the main text and denote the optimal contest rule that

maximizes Λ(x,p,v) by (α∗,β∗) ≡
(
(α∗1, . . . , α

∗
n), (β∗1 , . . . , β

∗
n)
)
; denote the correspond-

ing equilibrium effort profile and winning probabilities by x∗ ≡ (x∗1, . . . , x
∗
n) and p∗ ≡

(p∗1, . . . , p
∗
n), respectively.

Suppose to the contrary that β∗t > 0 for some t ∈ N in the optimum. Let us focus on

the case of an active contestant t (i.e., x∗t > 0). The equilibrium condition is given by

p∗t (1− p∗t )vt = c′t(x
∗
t ) ·

α∗tht(x
∗
t ) + β∗t

α∗th
′
t(x
∗
t )

.

Denote by x† the unique solution to the following equation:

c′t(x
∗
t ) ·

α∗tht(x
∗
t ) + β∗t

α∗th
′
t(x
∗
t )

= c′t(x
†) · ht(x

†)

h′t(x
†)
. (A1)

Simple analysis would verify that x† > x∗t , given β∗t > 0. Consider an alternative contest

rule with α̃ ≡ (α̃1, . . . , α̃n) and β̃ ≡ (β̃1, . . . , β̃n), such that

(
α̃i, β̃i

)
:=


(
α∗t ht(x

∗
t )+β∗t

ht(x†)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

In words, all contestants are awarded the same identity-dependent treatment as before except

for contestant t. The new contest rule removes the headstart for contestant t. Simple algebra
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verifies that the equilibrium effort profile under the new contest rule (α̃, β̃)—which we denote

by x̃∗ ≡ (x̃∗1, . . . , x̃
∗
n)—is given by

x̃∗i =

{
x† for i = t,

x∗i for i 6= t.

The new contest rule outperforms under Assumption 2. It induces the same winning proba-

bility distribution, because α̃t · ht(x†) + β̃t = α∗t · ht(x∗t ) + β∗t by our construction, while the

effort of contestant t strictly increases because x† > x∗t by Equation (A1).

The proof for the case of inactive contestant t (i.e., x∗t = 0) is similar and is omitted for

brevity. This completes the proof.

We thus verify the robustness of Theorem 2 in the extended setting, which allows us

to simplify the optimization problem by focusing on only the optimal choice of α. By

Theorem A1, the following must hold in an equilibrium:

pi(1− pi)vi = c′i(xi) ·
hi(xi)

h′i(xi)
,∀ i ∈ N . (A2)

Define the inverse of log(c′i(x) · hi(x)/h′i(x)) as gi(·). Then the correspondence (A2) can be

rewritten as

xi = gi

(
log(pi

(
1− pi)

)
+ log(vi)

)
,∀ i ∈ N . (A3)

We further obtain the following, which, together with the correspondence, reinstates our

optimization approach.

Theorem A2 (Implementing Winning Probabilities by Setting Biases with Het-

erogeneous Contest Technologies and Cost Functions) Fix any equilibrium winning

probability distribution p ≡ (p1, . . . , pn) ∈ ∆n−1.

i. If pj = 1 for some j ∈ N , then p ≡ (p1, . . . , pn) can be induced by the following set of

biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =

{
1 if i = j,

0 if i 6= j.

ii. If there exist at least two active contestants, then p ≡ (p1, . . . , pn) can be induced by

the following set of biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =


pi

hi

(
gi

(
log(pi(1−pi))+log(vi)

)) if pi > 0,

0 if pi = 0.

(A4)
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Proof. Part (i) of the theorem is trivial, and it remains to show part (ii). It is clear that

xi = 0 is a strictly dominant strategy if αi = 0. For (pi, pj) > (0, 0), we must have (xi, xj) >

(0, 0). Therefore, the following first-order conditions must be satisfied by Equation (A3):

xi = gi

(
log(pi

(
1− pi)

)
+ log(vi)

)
,

xj = gi

(
log(pj

(
1− pj)

)
+ log(vj)

)
.

Note that Equation (1) implies that

pi
pj

=

αi·hi(xi)∑n
k=1 αk·hk(xk)

αj ·hi(xj)∑n
k=1 αk·hk(xk)

=
αi · hi(xi)
αj · hj(xj)

.

Combining the above conditions, we can obtain that

αi
αj

=
pi/hi(xi)

pj/hj(xj)
=

pi

hi

(
gi

(
log(pi(1−pi))+log(vi)

))
pj

hj

(
gj

(
log(pj(1−pj))+log(vj)

)) .

The last equation clearly holds for the set of weights specified in Equation (A4). This

completes the proof.

This restores Theorem 3 in our baseline setting, which states that any winning probability

distribution can be induced in equilibrium by an α. We then proceed to apply our approach

to optimal design for the maximization of total effort and the expected winner’s effort.

Proposition A1 (Total-effort-maximizing Contests with Heterogeneous Contest

Technologies and Cost Functions) Suppose that n ≥ 2, Assumption A1 is satisfied, and

the designer aims to maximize total effort. Then the following statements hold:

i. The optimal contest allows for at least three active players if possible.

ii. The optimal contest does not allow any contestant to win with a probability more than

1/2, i.e., p∗i ≤ 1/2, ∀ i ∈ N , with equality if and only n = 2.

Proof. The same logic as that in the main text would reveal p∗1 = p∗2 = 1
2

in the optimum

when n = 2. We now verify the claim for the case of n ≥ 3. We first prove part (i) of the

proposition. Suppose, to the contrary, that only two players remain active in the optimal

contest. It is clear that p∗1 = p∗2 = 1
2

in the optimum. Without loss of generality, assume that

contestants 1 and 2 are active. Now consider the following profile of equilibrium winning
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probabilities p = (1
2
, 1

2
− ε, ε, 0, . . . , 0). It can be verified that the total effort under p is equal

to

Λ(x,p,v) = g1

(
log(

1

4
) + log(v1)

)
+g2

(
log(

1

4
− ε2) + log(v2)

)
+g3

((
log(ε(1− ε)

)
+ log(v3)

)
.

Simple algebra shows that ∂Λ/∂ε > 0 when ε is sufficiently small. Therefore, at least three

players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗i ≥ 1
2

for some i ∈ N . If

p∗i >
1
2
, then the contest designer can assign probability 1−p∗i to contestant i and probability

p∗j +(2p∗i −1) to an arbitrary contestant j 6= i. Because at least three players remain active in

the optimum, we must have p∗i +p
∗
j < 1. This in turn implies that |p∗j+(2p∗i−1)− 1

2
| < |p∗j− 1

2
|,

and thus contestant j’s effort strictly increases. Furthermore, it follows from Equation (A3)

that contestant i’s effort remains the same. Therefore, the total effort strictly increases after

the adjustment. If p∗i = 1
2
, then there exists an active player j ∈ N such that pj ∈ (0, 1

2
),

because at least three players remain active in the optimum. In such a scenario, the designer

can increase the total effort by reducing p∗i by a sufficiently small amount and increasing p∗j
by the same amount. This completes the proof.

The result of Proposition 1 in the baseline analysis is perfectly preserved. We then

examine the case of maximizing the expected winner’s effort.

Proposition A2 (Optimal Contest that Maximizes the Expected Winner’s Ef-

fort with Heterogeneous Contest Technologies and Cost Functions) Suppose that

Assumption A1 is satisfied and the designer aims to maximize the expected winner’s effort.

Then only two contestants would remain active in the optimal contest.

Proof. It is useful to first prove the following intermediate result.

Lemma A1 Consider a contest with three players who are indexed by i, j, and k. Suppose

that the contest designer aims to maximize the expected winner’s effort. Then setting pi =

pj = pk = 1
3

is suboptimal.

Proof. Without loss of generality, we assume that

gi

(
log

(
2

9

)
+ log(vi)

)
≥ gj

(
log

(
2

9

)
+ log(vj)

)
≥ gk

(
log

(
2

9

)
+ log(vk)

)
.

The difference between the expected winner’s effort under (pi, pj, pk) = (1
2
, 1

2
, 0) and that
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under (pi, pj, pk) = (1
3
, 1

3
, 1

3
) can be derived as1

2
gi

(
log

(
1

4

)
+ log(vi)

)
+

1

2
gj

(
log

(
1

4

)
+ log(vj)

)
−

1

3
gi

(
log

(
2

9

)
+ log(vi)

)
+

1

3
gj

(
log

(
2

9

)
+ log(vj)

)
+

1

3
gk

(
log

(
2

9

)
+ log(vk)

)
>

1

6

gi(log

(
2

9

)
+ log(vi)

)
− gj

(
log

(
2

9

)
+ log(vj)

)
≥ 0,

where the strict inequality follows from 1
4
> 2

9
, gj

(
log
(

2
9

)
+ log(vj)

)
≥ gk

(
log
(

2
9

)
+ log(vk)

)
,

and the monotonicity of gi(·), gj(·), and gk(·). Therefore, setting pi = pj = pk = 1
3

is subop-

timal. This completes the proof.

Now we can prove the proposition. Suppose, to the contrary, that three or more players

remain active in the optimal contest. Then there exist i, j, k ∈ N such that p∗∗i ≥ p∗∗j > 0 and

p∗∗i ≥ p∗∗k > 0. Lemma A1 implies that min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1. Let p∗∗jk := p∗∗j + p∗∗k .

Without loss of generality, suppose that

gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
≥ gk

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vk)

)
.

It follows immediately that

gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
≥ gk

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vk)

)
> gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)
, (A5)

where the strict inequality follows from min{2p∗∗j +p∗∗k , p
∗∗
j +2p∗∗k } < 1 and the monotonicity

of gk(·). Suppose that the contest designer assigns probability p∗∗jk := p∗∗j +p∗∗k to player j and

0 to player k, and does not change the equilibrium winning probability of all other players.

Then the difference between the expected winner’s effort under the new profile of winning
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probabilities and that under p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) can be derived as

(p∗∗j + p∗∗k )gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
−

[
p∗∗j gj

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)
+ p∗∗k gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]

= p∗∗j

[
gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− gj

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)]

+ p∗∗k

[
gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]
> 0,

where the strict inequality follows from min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1, the monotonicity

of gj(·), and (A5). A contradiction. Therefore, only two contestants would remain active in

the optimal contest. This completes the proof.

Proposition 2 states that only two active contestants remain in the optimum. This

continues to hold in the extended setting.

In conclusion, most of our results would qualitatively hold when the heterogeneity in

contest technologies and effort cost functions are generally modeled. However, encapsulating

contestants’ heterogeneity into the difference in their prize valuations—or the cost parameter

di as in the isomorphic setting—provides a convenient measure or definition of contestants’

strength and allows for handy and lucid comparative statics, which gives rise to Theorem 4

(the general exclusion principle), one part of Proposition 2 (winning probability ranking for

the maximization of the expected winner’s effort), and Proposition 3 (winning probability

ranking under total-effort maximization). All of these results provide comparative statics of

winning probability rankings with respect to the difference in contestants’ prize valuations.
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