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a b s t r a c t

This paper examines optimally biased Tullock contests. We consider a multi-player Tullock contest in
which players differ in their prize valuations. The designer is allowed to impose identity-dependent
treatments – i.e., multiplicative biases – to vary their relative competitiveness. The literature has been
limited, because a closed-form solution to the equilibrium is in general unavailable when the number
of contestants exceeds two, which nullifies the usual implicit programming approach. We develop an
algorithmic technique adapted from the general approach of Fu and Wu (2020) and obtain a closed-
form solution to the optimum that addresses a broad array of design objectives. We further analyze a
resource allocation problem in a research tournament and adapt Fu and Wu’s (2020) approach to this
noncanonical setting. Our analysis paves the way for future research in this vein.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In a contest, contenders sink irreversible effort or costly bids
o vie for limited prizes, while their competitive outlays are
onrefundable regardless of the outcome. Such competitions can
e exemplified by a plethora of examples, ranging from elec-
oral competitions, lobbying, R&D races, and college admissions
o sporting events. A voluminous economics literature has been
eveloped to investigate contestants’ strategic behavior and the
ptimal design of contests for various goals.
This paper studies optimal contest design with contestants

ho differ in strength. Such heterogeneity affords the designer
he flexibility to administer identity-dependent treatments that
anipulate their relative competitiveness and bias the competi-

ion. Consider, for instance, the widespread practice of affirmative
ction in college admissions. Similarly, incumbent workers in
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firms are often ex ante preferred to external candidates when
they compete for a vacancy.

We focus on the popularly adopted Tullock contest model and
develop an algorithmic technique – which extends the general
approach proposed by Fu and Wu (2020) – to solve for the
optimally biased contest in closed form that addresses a wide
variety of concerns. Imagine an asymmetric multi-player winner-
take-all contest in which n ≥ 2 contestants differ in their prize
valuations. With effort entries x ≡ (x1, . . . , xn), contestant i wins
with a probability

pi(x,α) :=
αif (xi)∑n
j=1 αjf (xj)

,

ith αi ≥ 0 for all i ∈ {1, . . . , n}; the function f (·) is typically
abeled the impact function of the contest, and takes the form of
(x) = xr , with r ∈ (0, 1] in Tullock settings. The set of weights
≡ (α1, . . . , αn) is a design variable or contest rule to be chosen
y the designer prior to the competition.
The literature on optimally biased contests has typically fo-

used on two-player settings and/or restricted design objectives.
he conventional optimization approach requires an equilibrium
olution of the contest under every possible set of biases α.
owever, a solution is in general unavailable when three or
ore players are involved, except for the case of lottery contests,

.e., r = 1. Based on the equilibrium characterization of Stein
2002), Franke et al. (2013) make a pioneering contribution to
olving for optimal biases that maximize total effort in a multi-
layer lottery contest that allows for n ≥ 3. Fu and Wu (2020)
ntroduce an alternative avenue for the optimization problem:

hey let the designer choose the equilibrium winning probability
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istribution as the design variable to maximize a more general
bjective function – with total effort maximization as a special
ase – and then show that every equilibrium winning proba-
ility distribution can be induced by a set of weights α. This
llows them to characterize the optimum without solving for the
quilibrium.
Our paper extends Fu and Wu (2020) in two dimensions. First,

hey consider a general concave impact function f (·), which limits
heir attention to the qualitative properties of the optimal contest.
n contrast, we examine in depth a Tullock setting and develop an
lgorithm to obtain a closed-form solution to the optimal biases α

nd the set of active contestants – i.e., those who expend strictly
ositive efforts – in the optimum. This enables handy compara-
ive statics of the optimum with respect to environmental factors.
econd, we analyze a noncanonical setting for contest design
hat departs from the framework of Fu and Wu (2020), thereby
xpanding the scope of application for their approach.
We first construct a contest design problem in which the

esigner cares not only about total effort – which is commonly as-
umed in the contest literature – but also the selection efficiency
nd/or “closeness” of the competition.1 Formally, she maximizes
convex combination of aggregate effort, the expected ability of
he winner, and the variance of contestants’ equilibrium winning
robability distribution. We detail an algorithm for the analy-
is, which paves the way for future studies of optimally biased
ullock contests.
We then analyze an optimal resource allocation problem in

research tournament à la Fullerton and McAfee (1999), which
s strategically equivalent to a Tullock contest (see Baye and
oppe, 2003; Fu and Lu, 2012). We allow a sponsor to split a
ixed amount of productive resources – e.g., research funding –
mong firms to maximize the expected quality of the winning
roduct. Lichtenberg (1990), for instance, documents the fact that
xtensive subsidies are provided by the United States Depart-
ent of Defense (DoD) to assist private military technology firms

hat compete for defense procurement contracts.2 The subsidy
xemplifies a “technology-based” ( Kirkegaard, 2020) preferential
reatment, as it not only varies firms’ relative competitiveness,
ut also affects the recipient’s actual productivity. This optimiza-
ion problem differs from the setting delineated by Fu and Wu
2020), because the design variable – i.e., the resource allocation
rofile – influences actual output and thus directly enters the
esigner’s objective function.
The remainder of the paper is organized as follows: In Sec-

ion 2, we describe the baseline model, lay out the optimal
ontest design problem, solve for the optimal contest, and present
omparative statics. In Section 3, we extend the model to consider
ptimal resource allocation in R&D contests. Section 4 concludes
he paper.

. Optimal design of biased Tullock contests

In this section, we first set up the contest model and the
ptimal design problem. We then carry out the optimal analysis.

1 In a corporate succession race, the board cares not only about candidates’
roductive efforts but also the winning candidate’s quality. Similarly, in a
porting event, the organizer benefits not only from athletes’ effort but also
rom suspense regarding the outcome (Chan et al., 2008).
2 In the famous joint strike fighter (JSF) competition, the DoD financially

ponsored Lockheed Martin’s and Boeing’s prototype development.
 a

11
2.1. The model

There are n ≥ 2 risk-neutral contestants competing for a
prize. The prize bears a value vi > 0 for each contestant i ∈

N ≡ {1, . . . , n}, with v1 ≥ · · · ≥ vn > 0, which is commonly
known. To win the prize, contestants simultaneously submit their
effort entry xi ≥ 0. One’s bid incurs a unity marginal effort
cost. It should be noted that modeling contestants’ heterogene-
ity through different prize valuations is equivalent to assuming
different marginal effort costs.3

We consider a standard Tullock contest: For a given effort
profile x ≡ (x1, . . . , xn), a contestant i wins the prize with a
probability

pi(x,α) :=

⎧⎨⎩
αixri∑n
j=1 αjx

r
j

if
∑n

j=1 αjxrj > 0,
αi∑n
j=1 αj

if
∑n

j=1 αjxrj = 0,
(1)

with αi ≥ 0 and r ∈ (0, 1]. The parameter r ∈ (0, 1] measures the
precision of the winner-selection mechanism. The set of weights
α ≡ (α1, . . . , αn) is set by a contest designer as the contest rule
prior to the competition.

Given the above contest success function (1) and the effort
profile x ≡ (x1, . . . , xn), contestant i’s expected payoff is

πi(x,α) := pi(x,α) · vi − xi.

2.2. Contest design: Mathematical Programming with Equilibrium
Constraints (MPEC)

Prior to the contest, the designer, anticipating contestants’
equilibrium plays, chooses contest rule α ≡ (α1, . . . , αn) ∈

Rn
+

\ {(0, . . . , 0)}. Szidarovszky and Okuguchi (1997) and Cornes
and Hartley (2005) establish the existence and uniqueness of
a pure-strategy equilibrium in n-player Tullock contest games
with r ∈ (0, 1]. The optimization problem thus yields a typi-
cal mathematical program with equilibrium constraints (MPEC):
Contestants’ equilibrium effort profile, x ≡ (x1, . . . , xn), and the
equilibrium winning probability distribution, p ≡ (p1, . . . , pn),
are endogenously determined in the equilibrium as functions of α,
which is set by the designer to maximize the following objective
function:

Λ(x, p, v) :=

n∑
i=1

xi + ψ

n∑
i=1

pivi − γ

n∑
i=1

(
pi −

∑n
j=1 pj
n

)2

,

with ψ, γ ≥ 0. (2)

In the case of ψ = γ = 0, the above expression boils down
o Λ(x, p, v) =

∑n
i=1 xi, the objective of total effort maximization

examined in the majority of studies on contest design. In addition
to effort supply, the contest designer is allowed to care about the
selection efficiency and/or closeness of the competition. The term∑n

i=1 pivi strictly increases when a contestant with a higher prize
valuation wins with a larger probability, which accommodates
the concern about selection efficiency with ψ > 0.4 Further,
the term

∑n
i=1

[
pi − (

∑n
j=1 pj)/n

]2 is the variance of contestants’
equilibrium winning probabilities. With γ > 0, the designer
prefers a less predictable competition, i.e., more suspense about
the eventual outcome.5

3 See the online appendix of Fu and Wu (2020) for a detailed analysis that
emonstrates the isomorphism.
4 See Meyer (1991), Hvide and Kristiansen (2003), Ryvkin and Ortmann

2008), and Fang and Noe (2019) for contest design for selection efficiency.
5 See Chan et al. (2008) and Ely et al. (2015) for economics studies of

uspense in competition. In addition, Fort and Quirk (1995), Szymanski (2003),
nd Runkel (2006) assume this objective in two-player contest settings.
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.3. Analysis

The traditional implicit programming approach has no bite
n our context. It requires a closed-form equilibrium solution
or every possible contest rule α in order to rewrite the design
bjective as a function of α. However, a multi-player asymmetric
ullock contest game is, in general, unsolvable.
The alternative approach of Fu and Wu (2020), which al-

ows us to bypass this technical difficulty, can be summarized
s follows. It first establishes a correspondence between contes-
ants’ effort profile and winning probability distribution in the
nique equilibrium of each contest game. Based on the corre-
pondence, the design objective can be rewritten as a function of
he equilibrium winning probability distribution only. Next, the
esigner assigns equilibrium winning probabilities to contestants
o maximize the reformulated objective function. Finally, they
how that a contest rule can be identified to induce the desir-
ble equilibrium winning probability distribution. This approach
ields qualitative implications for optimal contests in the general
ramework of Fu and Wu (2020), but it does not provide straight-
orward instruction for the analysis in more structured settings.
herefore, in this paper, we develop a five-step algorithm based
n Fu and Wu (2020) that leads to a closed-form solution to the
ptimum in Tullock contests.

.3.1. Reformulation of the designer’s problem
With a contest success function (1), the first-order condition

πi(x, α)/∂xi = 0 for an active contestant i – who exerts a strictly
positive amount of effort – is∑

j̸=i αj(xj)r[∑n
j=1 αj(xj)r

]2 × r(xi)r−1
=

1
αivi

.

The above equilibrium condition, together with the winning
probability pi(x,α) specified in Eq. (1), implies immediately a
fundamental correspondence6

xi = pi(1 − pi)vir. (3)

From Eq. (3), an equilibrium effort profile x is uniquely associ-
ated with a distribution of contestants’ equilibrium winning prob-
abilities p. The contest objective (2) can accordingly be rewritten
as

Λ
(
x(p, v), p, v

)
: =

n∑
i=1

[rpi(1 − pi)vi] + ψ

n∑
i=1

pivi

− γ

n∑
i=1

(
pi −

∑n
j=1 pj
n

)2

=

n∑
i=1

[
pi

(
1 +

ψ

r
− pi

)
vir
]

− γ

n∑
i=1

(pi)2 +
γ

n
, with ψ, γ ≥ 0. (4)

The optimization problem is readily reformulated. We treat
the distribution of winning probabilities p as the design variable:
The designer chooses an equilibrium winning probability distri-
bution, p ≡ (p1, . . . , pn), to maximize the objective function (4),
subject to the constraints:
n∑

i=1

pi = 1, and pi ≥ 0, for all i ∈ N . (5)

6 Note that the correspondence also holds for an inactive contestant who
xerts zero effort: If a contestant stands zero chance of winning in a Tullock
ontest, he must exert zero effort.
12
With the reformulated objective function (4), the optimization
problem boils down to a constrained quadratic programming
problem. A maximizer automatically exists given that the choice
set, defined by (5), is an (n − 1)-dimensional simplex.

2.3.2. Optimization
Denote by p∗

≡ (p∗

1, . . . , p
∗
n) the optimal winning probabil-

ties that maximize contest objective (4). The following useful
roperty can be established.

emma 1 (Monotone Winning Odds Ranking). Suppose that vi ≥ vj;
hen p∗

i ≥ p∗

j .

It is noteworthy that Lemma 1 differs from Theorem 4 and
roposition 3 of Fu and Wu (2020): The former does not provide
ranking of active contestants’ winning odds in the optimum,
hile the latter restricts its attention to the case of total effort
aximization. By Lemma 1, an ex ante stronger contestant – i.e., a
layer with a larger vi – must win with a (weakly) higher proba-
ility in the optimal contest. This in turn implies that whenever
he designer aims to exclude contestants – i.e., by assigning zero
r excessively small weights to discourage participation – she
ust target the ex ante weakest.
The fact that contestants may choose to stay inactive – i.e., ex-

rting zero effort – under certain α, leads to a nonsmooth opti-
mization problem in contest design. As a result, setting α involves
a hidden problem of optimally selecting participants, which has
plagued the equilibrium analysis of contest games. Lemma 1
inspires an algorithm that allows us to identify the set of active
contestants in the optimum and then solve for the optimal con-
test rule. A sketch analysis is laid out below – which proceeds in
five steps – and more details are provided in the Appendix.

1. We construct a sequence of auxiliary problems (Pm): For
each m = 1, . . . , n, the contest designer maximizes objec-
tive (4) subject to

∑n
i=1 pi = 1, ignoring the nonnegativity

constraint pi ≥ 0 for i ∈ {1, . . . ,m} and setting pi = 0 for
i ∈ N \ {1, . . . ,m}.

2. The solution to the auxiliary optimization problem (Pm),
which we denote by p̌m

≡ (p̌m1 , . . . , p̌
m
n ), can be obtained

explicitly by computing the first-order conditions, and is
given by

p̌mi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ+r
2r

(
vir

vir+γ
−

1
vir+γ

×

∑m
j=1

vjr
vjr+γ

−
2r
ψ+r∑m

j=1
1

vjr+γ

)
for i ∈ {1, . . . ,m},

0 for i ∈ N \ {1, . . . ,m}.

(6)

Close inspection of the above solution (6) would reveal
p̌m1 ≥ · · · ≥ p̌mm. Therefore, p̌

m
i ∈ (0, 1] for all i ∈ {1, . . . ,m}

if p̌mm > 0, given the constraint of
∑n

i=1 p̌
m
i = 1. In

other words, p̌m with p̌mm > 0 satisfies the nonnegativity
constraints pi ≥ 0 for all i ∈ N imposed by the original
optimization problem.

3. By Lemma 1, the optimal contest must exclude contestants
from the bottom. Therefore, the solution to the original
maximization problem – i.e., p∗

≡ (p∗

1, . . . , p
∗
n) – must

be in the form of (p1, . . . , pκ , 0, . . . , 0), with pi > 0 for
i ≤ κ , where κ ∈ {1, . . . , n} denotes the number of
active contestants in the optimum and will be determined
in the next step. The above analysis implies that the solu-
tion to the original maximization problem must coincide
with that of the auxiliary problem (Pκ ), i.e., p∗

= p̌κ ≡

(p̌κ , . . . , p̌κ , 0, . . . , 0).
1 κ
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4. Note that an auxiliary problem (Pm+1) can be obtained
by dropping the equality constraint pm+1 = 0 from the
auxiliary problem (Pm). Therefore, Λ

(
x(p̌m

, v), p̌m
, v
)
is in-

creasing in m. We can thus conclude that κ is the maximal
m ∈ {1, . . . , n} such that p̌mm > 0, i.e.,

κ = max
{
m = 1, . . . , n

⏐⏐ p̌mm > 0
}

≡ max

⎧⎨⎩m = 1, . . . , n

⏐⏐⏐⏐⏐
∑m

j=1
vjr

vjr+γ
−

2r
ψ+r∑m

j=1
1

vjr+γ

< vmr

⎫⎬⎭ .
(7)

5. Finally, any equilibrium winning probability distribution
p ≡ (p1, . . . , pn) ∈ ∆n−1, with p1 ∈ (0, 1), can be in-
duced in equilibrium by the following set of biases α(p) ≡

(α1(p), . . . , αn(p)):

αi(p) =

⎧⎨⎩ (pi)1−r

[(1−pi)vi]r

/[∑
j∈N+(p)

(pj)1−r

[(1−pj)vj]r
]

if pi > 0,

0 if pi = 0,

(8)

where N+(p) := {i = 1, . . . , n | pi > 0} denotes the set of
active contestants. In the extreme case in which p1 = 1, we
set α1 = 1 and αi = 0 for all i ∈ {2, . . . , n}. The solution to
the optimal biases, which we denote by α∗

≡ (α∗

1, . . . , α
∗
n ),

follows accordingly.7

The following can then be obtained, which provides a solu-
tion for the optimal biases α∗, the number of active contestants
in the optimum κ , and the corresponding equilibrium winning
probabilities p∗.

Theorem 1 (Optimal Contest Concerning Total Effort, Selection Effi-
ciency, and Closeness). The equilibrium winning probabilities p∗

≡

(p∗

1, . . . , p
∗
n) under the optimal contest are given by

p∗

i =

⎧⎪⎨⎪⎩
ψ+r
2r

(
vir

vir+γ
−

1
vir+γ

×

∑κ
j=1

vjr
vjr+γ

−
2r
ψ+r∑κ

j=1
1

vjr+γ

)
for i ≤ κ,

0 for i > κ,

(9)

here κ is given by Eq. (7). With |N+(p∗)| ≥ 2, the corresponding
eights α∗

≡ (α∗

1, . . . , α
∗
n ) that induce p∗

≡ (p∗

1, . . . , p
∗
n) are given

y8

∗

i =

⎧⎪⎨⎪⎩
(p∗

i )
1−r

[(1−p∗
i )vi]

r

/[∑κ

j=1

(
p∗
j

)1−r[(
1−p∗

j

)
vj

]r
]

if p∗

i > 0,

0 if p∗

i = 0.

(10)

We now briefly interpret the result and analysis. As men-
ioned above, the contest design entails a nonsmooth optimiza-
ion problem because contestants may choose to remain inactive
n response to the prevailing contest rule. Lemma 1 indicates
hat the optimum keeps only bottom-ranked contestants inactive,
hich narrows down the search for the optimum and inspires
he sequence of auxiliary problems (Pm). The solution for κ , the
umber of active contestants in the optimum, further leads us to
btain the equilibrium winning probability distribution p∗ and,
ubsequently, the optimal biases α∗. We provide the following
umerical example to illustrate the analysis.

7 It should be noted that the weights α(p) that induce each given p are
not unique. Namely, the same equilibrium effort profile can be induced by
scaling all αi(p) up or down by a positive factor. Our construction normalizes
the summation of the weights to unity, i.e.,

∑n
i=1 αi(p) = 1.

8 In the trivial case of |N (p∗)| = 1, p∗ can be induced by α∗
= (1, 0, . . . , 0).
+

13
Table 1
Optimal contest under different combinations of (ψ, γ ).

p∗

1 p∗

2 p∗

3 p∗

4 p∗

5 p∗

6 κ

γ = 0.2, ψ = 0.1 0.2661 0.2377 0.2030 0.1597 0.1039 0.0296 6
γ = 0.2, ψ = 0.2 0.2791 0.2470 0.2078 0.1588 0.0957 0.0117 6
γ = 0.2, ψ = 0.3 0.2911 0.2552 0.2113 0.1565 0.0860 0 5

γ = 0.1, ψ = 0.2 0.2853 0.2522 0.2113 0.1595 0.0917 0 5
γ = 0.2, ψ = 0.2 0.2791 0.2470 0.2078 0.1588 0.0957 0.0117 6
γ = 0.3, ψ = 0.2 0.2734 0.2423 0.2047 0.1582 0.0992 0.0222 6

α∗

1 α∗

2 α∗

3 α∗

4 α∗

5 α∗

6 κ

γ = 0.2, ψ = 0.1 0.1361 0.1456 0.1567 0.1698 0.1858 0.2059 6
γ = 0.2, ψ = 0.2 0.1386 0.1475 0.1577 0.1697 0.1842 0.2023 6
γ = 0.2, ψ = 0.3 0.1762 0.1864 0.1980 0.2116 0.2278 0 5

γ = 0.1, ψ = 0.2 0.1748 0.1856 0.1980 0.2123 0.2292 0 5
γ = 0.2, ψ = 0.2 0.1386 0.1475 0.1577 0.1697 0.1842 0.2023 6
γ = 0.3, ψ = 0.2 0.1375 0.1465 0.1571 0.1696 0.1849 0.2044 6

Example 1. Consider a contest with n = 6, v = (2, 1.8, 1.6, 1.4,
1.2, 1), and r = 1. We consider a case of γ = 0.2 and
ψ = 0.3. Applying (6), we can calculate p̌mm for each auxiliary
problem (Pm), with m ∈ {1, . . . , 6}. Note that p̌mm > 0 for
m = 1, . . . , 5 and p̌66 < 0, which gives κ = 5 by (7). We
can then obtain the equilibrium winning probability distribution
associated with the optimum from the solution to the auxil-
iary problem (P5), i.e., pi =

ψ+r
2r

{
vir

vir+γ
−

1
vir+γ

[∑5
j=1(

vjr
vjr+γ

−

2r
ψ+r )

]/(∑5
j=1

1
vjr+γ

)}
for i = 1, . . . , 5 and p6 = 0, which gives

p∗
= (0.2911, 0.2552, 0.2113, 0.1565, 0.0860, 0). Finally, we

apply the rule of (10), which gives α∗
= (0.1762, 0.1864, 0.1980,

0.2116, 0.2278, 0).

The closed-form optimal solution enables comparative static
analysis. A change in ψ or γ would vary the optimal bias rule α∗

and the associated equilibrium winning probability distribution
p∗. Further, a contestant’s equilibrium winning probability p∗

i may
drop to zero, which changes κ . Consider κ := κ(ψ, γ ) as a
function of ψ , the concern for selection efficiency, and γ , that
for closeness. The first corollary examines the comparative statics
of equilibrium winning probabilities with respect to ψ and γ
when κ remains unchanged, while the second concerns how the
number of active contestants responds to changes in parameters.

Corollary 1 (Comparative Statics of Equilibrium Winning Probabili-
ties). The following statements hold:

i. Fix γ ≥ 0 and suppose that ψH > ψL ≥ 0, with κ(ψH , γ ) =

κ(ψL, γ ). There exists a threshold v̄ ∈ [vκ , v1] such that
p∗

i (ψH , γ ) ≥ p∗

i (ψL, γ ) if and only if vi ≥ v̄.
ii. Fix ψ ≥ 0 and suppose that γH > γL ≥ 0, with κ(ψ, γH ) =

κ(ψ, γL). There exists a threshold ¯̄v ∈ [vκ , v1] such that
p∗

i (ψ, γH ) ≥ p∗

i (ψ, γL) if and only if vi ≤ ¯̄v.

By Corollary 1, when the designer is subject to a stronger
concern for selection efficiency (resp. closeness) – i.e., a larger ψ
(γ ) – winning odds will be tilted in favor of stronger (weaker)
contestants, and thus larger (smaller) weights tend to be assigned
to them. We resort to the same numeric setting – i.e., n = 6,

= (2, 1.8, 1.6, 1.4, 1.2, 1) and r = 1 – as in Example 1 and
vary the values of ψ and γ to illustrate the comparative statics.
In Table 1, the upper panel lays out contestants’ equilibrium
winning probabilities p∗ in the optimum, while the lower panel
lists the corresponding biases α∗. Holding fixed γ = 0.2, when ψ
increases from 0.1 to 0.2, κ remains at 6, but the weights for con-
testants 1–3 increase, which increase their equilibrium winning
probabilities. In contrast, those for contestants 4–6 decrease, as
shown in the first and second rows of both panels. The opposite
pattern can be observed for an increasing γ , and we omit the
discussion for brevity.
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The second and third rows of the lower panel show that when
ψ increases from 0.2 to 0.3, contestant 6 is entirely discouraged
and κ reduces to 5: With greater concern for selection efficiency
in place, the underdogs would be treated even less favorably and
eventually excluded from the competition. This observation is
formally established below.

Corollary 2 (Comparative Statics of Number of Active Contestants).
he following statements hold:

i. Fix γ ≥ 0 and suppose that ψH > ψL ≥ 0, then κ(ψH , γ ) ≤

κ(ψL, γ ).
ii. Fix ψ ≥ 0 and suppose that γH > γL ≥ 0, then κ(ψ, γH ) ≥

κ(ψ, γL).

Corollary 2 states that a stronger concern for selection effi-
iency (closeness) tends to lead the designer to exclude more
fewer) contestants. Taken together, the two comparative static
esults suggest that with greater concern for selection efficiency
closeness) in place, the contest designer is less (more) inclined to
evel the playing field. That is, she favors underdogs less (more)
n terms of equilibrium winning probability.

. Optimal resource allocation in R&D contests

We now consider a resource allocation problem in a research
ournament à la Fullerton and McAfee (1999). As will be shown
elow, the model is strategically equivalent to a Tullock contest.
sponsor invites n R&D firms to carry out an innovative project.
irms submit their products to the designer. The entry of the
ighest quality wins and its developer is awarded a prize, such
s a procurement contract. Each firm i’s prize valuation is given
y vi, with v1 ≥ · · · ≥ vn > 0.
Each firm i invests its own input xi ≥ 0 to develop the tech-

ology. The quality qi of firm i’s product is randomly drawn from
distribution with cumulative distribution function [Γ (qi)]αix

r
i ,

ith r ∈ (0, 1] and αi ≥ 0,∀ i ∈ {1, . . . , n}. The function Γ (·)
s a continuous cumulative distribution function on a support
q, q], with q > q. By Fullerton and McAfee (1999) and Baye and
oppe (2003), the term αixri can intuitively be interpreted as the

number of research ideas generated in developing the product
and indicates the firm’s research capacity: Each idea allows the
firm to produce a prototype, with its quality being drawn from
a distribution function Γ (·). A firm presents its best prototype to
the sponsor as its entry, and its quality follows the distribution
function [Γ (qi)]αix

r
i . The assumption of r ≤ 1 implies diminishing

marginal returns in the development process. By Baye and Hoppe
(2003) and Fu and Lu (2012), a firm i wins with a probability9

Pr
(
qi > max

j̸=i
qj

)
=

αixri∑n
j=1 αjxrj

,

which alludes to the model’s isomorphism to a Tullock contest.
The sponsor is endowed with a fixed budget of productive

resources – which we normalize to unity – and allocates the
resources among firms. We interpret αi ∈ [0, 1] as the resource
given to a firm i ∈ N , e.g., the funding provided by the Depart-
ment of Defense (DoD) to private military contractors, or by major
pharmaceutical companies to biomedical startups. Upon receiving
αi, firm i decides on its own input xi ≥ 0. The resource αi can

9 Alternatively, Loury (1979) and Dasgupta and Nti (1998) suggest a patent
ace model to study “first past the post’’ R&D contests. Specifically, a number
f firms pursue a technological discovery, and a sponsor, to secure the novel
echnology, rewards the firm that has the earliest success. It can be shown that
heir model is isomorphic to that of Fullerton and McAfee (1999), and thus the
esults we derive in this section extend to their setting.
14
presumably be viewed as a capital input in the development pro-
cess, while the input xi can conveniently be interpreted as a labor
input sunk by the firm, e.g., the time, energy, and intellectual
resources dedicated to the project.

The sponsor chooses allocation plan α ≡ (α1, . . . , αn) to
aximize the expected quality of the winning product. Denote
y qmax the highest quality realized out of all entries. Fixing firms’
nput profile x ≡ (x1, . . . , xn), it is straightforward to verify that
max is distributed with CDF [Γ (qmax)]

∑n
i=1 αix

r
i . Maximizing E(qmax)

s thus equivalent to maximizing

:=

n∑
i=1

αixri , (11)

ubject to the equilibrium constraint xi = argmaxxi≥0 πi(x,α),
αi ≥ 0, and

∑n
i=1 αi ≤ 1, where πi(x,α) is firm i’s expected

payoff.10 Obviously, the sponsor can effectively exclude a firm by
assigning zero resources to it.

It is noteworthy that the resource allocation problem de-
parts from the usual contest design problem based on identity-
dependent preferential treatment: The resource αi not only varies
the competitive balance of the competition, but also improves
its recipient’s actual productivity. The majority of the literature
implicitly assumes that identity-dependent treatment is a nom-
inal scoring rule and does not have intrinsic economic value.
Technically, maximizing

∑n
i=1 αixri goes beyond the scope of Fu

and Wu (2020): α is not only a design instrument, but also a
factor in the objective function because it directly accrues to
the sponsor’s benefit.11 Further, the power term r enters the
objective function (11) nonlinearly.

We can continue to adapt the general approach of Fu and Wu
(2020) to this setting despite the complications. The optimization
problem can be reformulated similarly, as in Section 2. The corre-
spondence between p and x in equilibrium, (3), continues to hold;
the objective function,

∑n
i=1 αixri , which contains α, also requires

that we spell out the relation between α and p in equilibrium.
Recall that we use N+(p) ≡ {i = 1, . . . , n | pi > 0} to denote the
et of active players in equilibrium. The following lemma ensues.

emma 2. Fix any profile of equilibrium winning probabilities p ≡

p1, . . . , pn) ∈ ∆n−1 such that |N+(p)| ≥ 2. The following resource
allocation profile α(p) ≡ (α1(p), . . . , αn(p)) uniquely maximizes the
expected quality of the winning product out of all of the rules that
induce p:

αi(p) =

{
(pi)1−r

[(1−pi)vi]r
×

1
η(p,r) if pi > 0,

0 if pi = 0,

where η(p, r) :=
∑

j∈N+(p)

{
(pj)1−r/[(1 − pj)vj]r

}
.

We can readily rewrite the objective function as
n∑

i=1

αixri =

n∑
i=1

αi [pi(1 − pi)vir]r =
r r

η(p, r)
, for all r ∈ (0, 1].

10 In the research tournament, the sponsor aims to boost the expected quality
of the winning product, which is a stochastic output of firms’ input x; she
nevertheless does not focus on the input itself. This design problem differs from
maximizing the expected winner’s effort – i.e.,

∑n
i=1 pixi – in Fu and Wu (2020).

11 Fu and Wu (2020) assume a general objective function Λ(x, p, v), which
factors in contestants’ prize valuations, their effort profiles, and the winning
probability distribution, with (2) being one example. Although their general
optimization approach provides a guideline for the analysis in this specific set-
ting, their framework does not encompass the scenario in which the designer’s
welfare depends directly on the design variable α, as (11) depicts. Therefore,
the general properties of optimal contests established in Fu and Wu (2020)
do not immediately extend. The detailed optimization exercise – e.g., optimally
selecting active participants – requires a drastically different analysis, as revealed
by the proof in the Appendix.
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he optimal resource allocation problem boils down to choosing
≡ (p1, . . . , pn) to minimize η(p, r), subject to constraints (5).

Denote by α∗∗
≡ (α∗∗

1 , . . . , α
∗∗
n ) and p∗∗

≡ (p∗∗

1 , . . . , p
∗∗
n ), re-

spectively, the optimal resource allocation and the equilibrium
winning probabilities under the optimal resource allocation. The
following can be obtained.

Theorem 2 (Optimal Resource Allocation in a Research Tourna-
ment with Constant Marginal Returns of Resources). Suppose that
the sponsor aims to maximize the expected quality of the winning
product. Fixing r ∈ (0, 1], the equilibrium winning probabilities
p∗∗

≡ (p∗∗

1 , . . . , p
∗∗
n ) in the optimal contest are given by

p∗∗

1 =

√
M2 + 4χ + M√

M2 + 4χ + M + 2
, p∗∗

2 = 1 − p∗∗

1 ,

and p∗∗

3 = · · · = p∗∗

n = 0,

where χ := (v1/v2)
r

≥ 1 and M := (χ − 1)(1 − r)/r. Moreover,
the corresponding resource allocation α∗∗

≡ (α∗∗

1 , . . . , α
∗∗
n ) that

induces p∗∗
≡ (p∗∗

1 , . . . , p
∗∗
n ) is given by

α∗∗

i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(p∗∗

i )
1−r

[(1−p∗∗
i )vi]

r

/[
(p∗∗

1 )
1−r

[(1−p∗∗
1 )v1]

r

+
(p∗∗

2 )
1−r

[(1−p∗∗
2 )v2]

r

]
if i ∈ {1, 2},

0 if i ≥ 3.

Theorem 2 predicts that the resources will be concentrated
n the two strongest firms in the optimum. Our results echo the
roposition that restricting entry to two competitors optimizes
he tournament in Fullerton and McAfee (1999), but for a dif-
erent reason. Fullerton and McAfee contend that this “decreases
he coordination problem of competing firms and minimizes the
uplication of fixed costs.” In our setting, in contrast, this avoids
asting costly resources on less productive firms because of the
omplementarity between the resource αi and a firm’s input xi.
urther, comparing α∗∗

1 and α∗∗

2 yields the following.

Corollary 3 (“National Champion” vs. Handicapping). Suppose that
1 > v2; then α∗∗

1 ≷ α∗∗

2 if and only if r ≶ 1
2 .

By Corollary 3, the sponsor may prefer to create a “national
hampion” by assisting the stronger firm more, which further
psets the balance of the playing field. Favoring the stronger firm
ill be optimal if and only if the R&D process is sufficiently noisy
r risky, i.e., r < 1/2. A tension arises between competitive
alance and allocative efficiency: On the one hand, favoring the
eaker firm enhances competition and increases overall input;
n the other hand, it undermines allocative efficiency. Allocative
fficiency requires that the resource be entirely concentrated
n the firm with the highest input ex post, i.e., the ex ante
tronger firm. When the development process involves more risk
i.e., a smaller r – the additional incentive provided by a level
laying field would be limited by the lower marginal return to
nput. Improving allocative efficiency tends to be prioritized more
han motivating firms’ investment, which compels the sponsor to
ultivate a national champion instead of favoring the underdog.
We have assumed that the resource, αi, has a constant

arginal return. This can be interpreted as access to laborato-
ies, equipment, or computing facilities owned by the sponsor.
ntitlement to use such resources allows a firm to replicate its ex-
eriments and trials. Next, we consider a more generalized model
hat allows for declining marginal returns for the resource αi.
pecifically, let the production function take the form fi(xi;αi) =
d
i ·x

r
i , with d, r ∈ (0, 1]. The sponsor maximizesΛ :=

∑n
i=1 α

d
i ·x

r
i ,

n which case the design variable α also enters the objective
i

15
unction nonlinearly; the nonlinearity substantially complicates
he optimization. Although a full-scale analysis is unavailable, we
dapt the approach of Fu and Wu (2020) to obtain the following
or the case of identical firms.

heorem 3 (Optimal Resource Allocation in a Research Tournament
ith Diminishing Marginal Returns of Resources). Suppose that (i)

i(xi;αi) = αd
i · xri , with d, r ∈ (0, 1]; (ii) all firms are identical,

.e., v1 = · · · = vn =: v; and (iii) the sponsor aims to maximize the
xpected quality of the winning product. Then all firms that receive
positive amount of resource must win with equal probability.
oreover, the number of active firms, which we denote by κ†, is
iven by

i. if d ∈ (0, 1 − r], then κ†
= n;

ii. if d ∈ (1 − r, 1], then κ†
∈

{
min

{
n,
⌊
1 +

r
r+d−1

⌋}
,

min
{
n,
⌊
2 +

r
r+d−1

⌋}}
.

By Theorem 3, more than two firms can be kept active in
the optimum when d is sufficiently small. In particular, all firms
remain active when d falls below 1 − r . A smaller d sparks an
additional concern for the sponsor: Concentrating the resource
on a small subset of firms further decreases marginal return. This
tempts the sponsor to spread the resource over more firms, since
taking it away from a well-endowed firm would not incur a sig-
nificant cost. In contrast, transferring it to a poorly endowed firm
could yield significant additional gains. This force is in conflict
with the effect of complementarity, and the optimum is shaped
by the tension. A similar resource allocation problem has been
investigated by Fu et al. (2012) in a two-player model. Theorem 2
endogenizes their setting, while Theorem 3 demonstrates the
limitations.

4. Conclusion

In this paper, we develop an algorithm adapted from the
indirect optimization approach proposed by Fu and Wu (2020)
for the optimal design of biased contests in a Tullock setting.
We obtain a closed-form solution to the optimum for a wide
spectrum of design objectives, which would not be possible under
a conventional approach. As previously mentioned, its versatile
application is not limited to the design problems described in
this paper. Consider, for instance, a context in which the designer
aims to maximize the expected winner’s effort – i.e.,

∑n
i=1 pixi

– in which case a handy solution can again be achieved using
this approach. Our analysis provides useful implications for future
research in this vein.

Appendix. Proofs

Proof of Lemma 1. Suppose, to the contrary, that there exists
i, j ∈ N such that vi ≥ vj and p∗

i < p∗

j in the optimal contest.
It follows immediately that p∗

i < 1/2. Next, we show that
increasing p∗

i by a sufficiently small ϵ > 0 and decreasing p∗

j by
the same amount lead to a strictly higher payoff to the contest
designer. With slight abuse of notation, we denote the contest
designer’s payoff under the alternative winning probabilities by
Λ(ϵ). It follows from Eq. (4) that

Λ(ϵ) = (p∗

i + ϵ)
(
1 +

ψ

r
− p∗

i − ϵ

)
vir + (p∗

j − ϵ)

×

(
1 +

ψ

r
− p∗

j + ϵ

)
vjr

− γ
[
(p∗

i + ϵ)2 + (p∗

j − ϵ)2
]
+ Q,
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here the constant Q is given by

:=

∑
s∈N\{i,j}

[
pi

(
1 +

ψ

r
− ps

)
vsr
]

− γ
∑

s∈N\{i,j}

(ps)2 +
γ

n
.

Simple algebra yields

Λ′(0) =

(
1 +

ψ

r
− 2p∗

i

)
vir −

(
1 +

ψ

r
− 2p∗

j

)
vjr

+ 2(p∗

j − p∗

i )γ

>

(
1 +

ψ

r
− 2p∗

i

)
vir −

(
1 +

ψ

r
− 2p∗

i

)
vjr

=

(
1 +

ψ

r
− 2p∗

i

)
(vi − vj)r ≥ 0,

where the first inequality follows from the postulated p∗

i < p∗

j
and the second inequality follows from p∗

i < 1/2. This concludes
the proof. ■

Proof of Theorem 1. A sketch analysis is presented in the main
text, and it suffices to verify that (i) the equilibrium winning
probabilities p̌m

≡ (p̌m1 , . . . , p̌
m
n ) specified in (6) solve the auxiliary

problem (Pm) in Step 2 of the algorithm in the main text; and (ii)
the constructed weights α(p) specified in (8) induce an arbitrary
equilibrium winning probability distribution with p1 ∈ (0, 1) in
tep 5.
We first prove (i). Clearly, pm+1 = · · · = pn = 0 by definition.

he first-order condition for the auxiliary problem (Pm) with
espect to pi yields:

1 +
ψ

r
− 2pi

)
vir − 2γ pi + β = 0, for i = 1, . . . ,m,

here β is the Lagrange multiplier for the equality constraint
n
i=1 pi − 1 = 0. Rearranging the above condition yields

i =
vi(ψ + r) + β

2(vir + γ )
, for i = 1, . . . ,m. (12)

umming over all of the conditions in (12), we can obtain

=

1 −
∑m

j=1
vj(ψ+r)
2(vjr+γ )∑m

j=1
1

2(vjr+γ )

. (13)

ubstituting (13) into (12) yields the following:

i =
ψ + r
2r

⎛⎝ vir
vir + γ

−
1

vir + γ
×

∑m
j=1

vjr
vjr+γ

−
2r
ψ+r∑m

j=1
1

vjr+γ

⎞⎠ ,
for i = 1, . . . ,m,

which coincides with the expression p̌mi specified in (6).
Next, we prove (ii). For pi, pj > 0, it follows from Eqs. (1) and

(3) that

pi
pj

=

αixri∑n
k=1 αkx

r
k

αjxrj∑n
k=1 αkx

r
k

=
αixri
αjxrj

=
αi [pi(1 − pi)vir]r

αj
[
pj(1 − pj)vjr

]r ,
which in turn implies that

αi

αj
=

(pi)1−r[
(1−pi)vi

]r
(pj)

1−r[
(1−pj)vj

]r
=

(pi)1−r

[(1−pi)vi]r

/[∑
k∈N+(p)

(pk)1−r

[(1−pk)vk]r

]
(pj)1−r

[(1−pj)vj]r

/[∑
k∈N+(p)

(pk)1−r

[(1−pk)vk]r

] =
αi(p)
αj(p)

.

his concludes the proof. ■
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roof of Corollary 1. For notational convenience, define

¯m :=

∑m
j=1

vj
vjr+γ∑m

j=1
1

vjr+γ

, and ¯̄vm :=

∑m
j=1

vj

(vj+
γH
r )(vj+

γL
r )∑m

j=1
1

(vj+
γH
r )(vj+

γL
r )

,

for m = 1, . . . , n.

It is useful to state an intermediate result.

Lemma 3. The following statements hold:

i. Fix γ ≥ 0 and suppose that ψH > ψL ≥ 0, then for all m ∈ N ,
p̌mi (ψH , γ ) ≥ p̌mi (ψL, γ ) if and only if vi ≥ v̄m.

ii. Fix ψ ≥ 0 and suppose that γH > γL ≥ 0, then for all m ∈ N ,
p̌mi (ψ, γH ) ≥ p̌mi (ψ, γL) if and only if vi ≤ ¯̄vm.

roof. The first part of the lemma is obvious for m = 1 and it
emains to prove the result for the case m ≥ 2. Recall that

ˇ
m
i =

ψ + r
2

vi −

∑m
j=1

vj
vjr+γ

−
2

ψ+r∑m
j=1

1
vjr+γ

vir + γ

=
ψ + r

2
1

vir + γ

(
vi −

∑m
j=1

vj
vjr+γ∑m

j=1
1

vjr+γ

)
+

1
(vir + γ )

∑m
j=1

1
vjr+γ

.

From the above equation, we can obtain that

p̌mi (ψH , γ ) − p̌mi (ψL, γ ) ⋛ 0 ⇔ vi ⋛

∑m
j=1

vj
vjr+γ∑m

j=1
1

vjr+γ

≡ v̄m.

Similarly, we prove the second part of the lemma. Note that p̌mi
can be rewritten as follows:

p̌mi =
ψ + r
2r

vi −

∑m
j=1

vj
vj+γ̃

−
2r
ψ+r∑m

j=1
1

vj+γ̃

vi + γ̃

=
ψ + r
2r

⎛⎜⎜⎜⎝1 −

∑m
j=1

vj
vj+γ̃

−
2r
ψ+r∑m

j=1
1

vj+γ̃
+ γ̃

vi + γ̃

⎞⎟⎟⎟⎠
=
ψ + r
2r

(
1 −

m −
2r
ψ+r

(vi + γ̃ )
∑m

j=1
1

vj+γ̃

)
,

here γ̃ := γ /r . It is straightforward to see that

p̌mi (ψ, γH ) − p̌mi (ψ, γL) =
ψ + r
2r

(
m −

2r
ψ + r

)
×

(vi + γ̃H )
∑m

j=1
1

vj+γ̃H
− (vi + γ̃L)

∑m
j=1

1
vj+γ̃L

(vi + γ̃H )
∑m

j=1
1

vj+γ̃H
(vi + γ̃L)

∑m
j=1

1
vj+γ̃L

=
ψ + r
2r

(
m −

2r
ψ + r

)

×

∑m
j=1

vj−vi
(vj+γ̃H )(vj+γ̃L)

(γ̃H − γ̃L)

(vi + γ̃H )
∑m

j=1
1

vj+γ̃H
(vi + γ̃L)

∑m
j=1

1
vj+γ̃L

.

herefore, we can obtain that

ˇ
m
i (ψ, γH ) − p̌mi (ψ, γL) ⋛ 0 ⇔

m∑
j=1

vj − vi

(vj + γ̃H )(vj + γ̃L)
⋛ 0

⇔ vi ⋚

∑m
j=1

vj
(vj+γ̃H )(vj+γ̃L)∑m

j=1
1

(vj+γ̃H )(vj+γ̃L)

≡ ¯̄vm. ■
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Corollary 1(i) follows immediately from κ(ψH , γ ) = κ(ψL, γ )
nd Lemma 3(i). Similarly, Corollary 1(ii) follows from κ(ψ, γH ) =

(ψ, γL) and Lemma 3(ii). This concludes the proof. ■

roof of Corollary 2. Part i follows immediately from the fact
hat∑m

j=1
vjr

vjr+γ
−

2r
ψ+r

]/[∑m
j=1

1
vjr+γ

]
is strictly increasing in ψ , and

it remains to show part ii. Carrying out the algebra, κ(ψ, γ ) in
Eq. (7) can be written as

κ(ψ, γ ) := max

⎧⎨⎩m = 1, . . . , n

⏐⏐⏐⏐⏐
m∑
j=1

vj − vm

vjr + γ
<

2
ψ + r

⎫⎬⎭ .
efine H(m, γ ) as

(m, γ ) :=

m∑
j=1

vj − vm

vjr + γ
.

It follows immediately that

H(m + 1, γ ) − H(m, γ ) =

m+1∑
j=1

vj − vm+1

vjr + γ
−

m∑
j=1

vj − vm

vjr + γ

=

m∑
j=1

vj − vm+1

vjr + γ
−

m∑
j=1

vj − vm

vjr + γ

=

m∑
j=1

vm − vm+1

vjr + γ
≥ 0.

herefore, H(m, γ ) is weakly increasing in m. Moreover, it is
traightforward to see that H(m, γ ) is weakly decreasing in γ .
hese two facts imply instantly that κ(ψ, γ ) is weakly increasing
n γ , holding fixed ψ ≥ 0. This completes the proof. ■

roof of Lemma 2. The proof is similar to that of Step 5 of the
lgorithm that leads to Theorem 1, and is omitted for brevity. ■

roof of Theorem 2. We first show that only the two strongest
irms would remain active in the optimal contest. Similar to
emma 1, we can show that p∗∗

1 ≥ · · · ≥ p∗∗
n in the optimal

ontest. We consider the following two cases depending on r
elative to one.

ase I: r = 1. Consider the following sequence of auxiliary prob-
ems (P̂m): For each m = 2, . . . , n, the sponsor minimizes
m

j=1

1
(1 − pj)vj

,

subject to the plausibility constraint
∑n

i=1 pi = 1, ignoring the
onnegativity constraint pi ≥ 0 for i ∈ {1, . . . ,m} and setting

pi = 0 for i ∈ N \ {1, . . . ,m}. The solution to the auxiliary opti-
mization problem (P̂m), which we denote by p̈m

≡ (p̈m1 , . . . , p̈
m
n ),

can be solved explicitly by computing the first-order conditions,
and is given by

p̈mi =

{
1 −

1
√
vi

×
m−1∑m
j=1

1√
vj

if i ∈ {1, . . . ,m},

0 if i ∈ N \ {1, . . . ,m}.

he corresponding η can be derived as the following:

(p̈m, 1) =

(∑m
i=1

1
√
vi

)2
.

m − 1
17
Next, we show that η(p̈m, 1) < η(p̈m+1, 1) for all m ∈ {2, . . . , n−

}, which is equivalent to∑m
i=1

1
√
vi

1
√
vm+1

+
∑m

i=1
1

√
vi

<

√
m − 1
√
m

.

Note that
∑m

i=1
1

√
vi

≤
m

√
vm+1

due to the postulated v1 ≥ · · · ≥ vn.
herefore, we have that∑m

i=1
1

√
vi

1
√
vm+1

+
∑m

i=1
1

√
vi

≤
m

m + 1
,

nd it remains to prove m
m+1 <

√
m−1
√
m , which can easily be shown

to hold after some algebra. Further, it is straightforward to verify
that p̈22 > 0. Therefore, only the two strongest firms would remain
active in the optimum for the case r = 1.

Case II: r < 1. It is useful to state an intermediate result.

Lemma 4. Suppose 0 < ℓ < 2
3 , µ ≥ 1 and p ∈ (0, ℓ), then

(p)1−r

(1 − p)r
+ µ×

(ℓ− p)1−r

(1 − ℓ+ p)r
>

ℓ1−r

(1 − ℓ)r
.

roof. Define G(ℓ, p) as

(ℓ, p) :=
(p)1−r

(1 − p)r
+ µ×

(ℓ− p)1−r

(1 − ℓ+ p)r
−

ℓ1−r

(1 − ℓ)r
.

We want to show G(ℓ, p) > 0 for ℓ > p. Fixing p, let us view G(·)
as a function of ℓ. Clearly, we have that G(p, p) = 0. Moreover,
we have that

G
(
2
3
, p
)

=
(p)1−r

(1 − p)r
+ µ×

( 2
3 − p

)1−r( 1
3 + p

)r −

( 2
3

)1−r( 1
3

)r
≥

(p)1−r

(1 − p)r
+

( 2
3 − p

)1−r( 1
3 + p

)r −

( 2
3

)1−r( 1
3

)r ,
where the inequality follows from the postulated µ ≥ 1. It can
e verified that

(p)1−r

(1 − p)r
+

( 2
3 − p

)1−r( 1
3 + p

)r −

( 2
3

)1−r( 1
3

)r ≥ 0,∀ (p, r) ∈

[
0,

2
3

]
× (0, 1).

herefore, to prove the lemma, it suffices to show that G(ℓ, p) is
ingle-peaked or increasing in ℓ.
Carrying out the algebra, we have that

∂G(ℓ, p)
∂ℓ

= µ×
(1 − ℓ+ p) − (1 − 2ℓ+ 2p)r

(ℓ− p)r (1 − ℓ+ p)1+r

−
(1 − ℓ) − (1 − 2ℓ)r

ℓr (1 − ℓ)1+r .

t can be verified that ∂G(ℓ,p)
∂ℓ

> 0 is equivalent to

Z(ℓ, p, r) := log(µ) + log ((1 − ℓ+ p) − (1 − 2ℓ+ 2p)r)
− log ((1 − ℓ) − (1 − 2ℓ)r)

− r log
(
ℓ− p
ℓ

)
− (1 + r) log

(
1 − ℓ+ p
1 − ℓ

)
> 0.

Note that Z(p, p, r) = ∞. To prove that G(ℓ, p) is single-peaked
or increasing in ℓ, it suffices to show that Z(ℓ, p, r) is strictly
decreasing in ℓ, that is,
∂Z(ℓ, p, r)

∂ℓ
=

2r − 1
(1 − ℓ+ p) − (1 − 2ℓ+ 2p)r

−
2r − 1

+ r
(
1

−
1

)

(1 − ℓ) − (1 − 2ℓ)r ℓ ℓ− p



S. Deng, Q. Fu and Z. Wu Journal of Mathematical Economics 92 (2021) 10–21

C

i
(
r
f

W

w
(
(
f
p

p

t
r

a
w
p

p

f

p

a

α

t

j

s
i

L

(

+ (1 + r)
(

1
1 − ℓ+ p

−
1

1 − ℓ

)
< 0,

∀ (ℓ, p, r) ∈ (0, 2/3) × (0, ℓ) × (0, 1).

arrying out the algebra, ∂Z(ℓ,p,r)
∂ℓ

< 0 is equivalent to

W(r) :=
(2r − 1)2

[(1 − ℓ+ p) − (1 − 2ℓ+ 2p)r] × [(1 − ℓ) − (1 − 2ℓ)r]

−
r

(ℓ− p)ℓ
−

1 + r
(1 − ℓ+ p)(1 − ℓ)

< 0.

For r ∈ (0, 1
2 ], W(r) can be bounded above by

W(r) <
(2r − 1)2

[(1 − ℓ+ p) − (1 − 2ℓ+ 2p)r] × [(1 − ℓ) − (1 − 2ℓ)r]

−
1

(1 − ℓ+ p)(1 − ℓ)

≤
(1 − 2r)2

(1 − ℓ+ p)(1 − ℓ)(1 − r)2
−

1
(1 − ℓ+ p)(1 − ℓ)

=
1

(1 − ℓ+ p)(1 − ℓ)
×

[
(1 − 2r)2

(1 − r)2
− 1

]
< 0,

where the first strict inequality follows from r > 0; the second
nequality follows from (1−ℓ)− (1−2ℓ)r = (1−ℓ)(1− r)+ℓr ≥

1− ℓ)(1− r) and (1− ℓ+ p)− (1− 2ℓ+ 2p)r = (1− ℓ+ p)(1−

)+ (ℓ− p)r ≥ (1− ℓ+ p)(1− r); and the last inequality follows
rom 1−2r

1−r < 1.
Similarly, for r ∈ ( 12 , 1), we have that

(r) ≤
(2r − 1)2

(ℓ− p)ℓr2
−

r
(ℓ− p)ℓ

−
1 + r

(1 − ℓ+ p)(1 − ℓ)

=
1

(ℓ− p)ℓ
×

1 − r
r2

×
(
r2 − 3r + 1

)
−

1 + r
(1 − ℓ+ p)(1 − ℓ)

< 0,

here the first inequality follows from (1 − ℓ) − (1 − 2ℓ)r =

1 − ℓ)(1 − r) + ℓr ≥ ℓr and (1 − ℓ + p) − (1 − 2ℓ + 2p)r =

1− ℓ+ p)(1− r)+ (ℓ− p)r ≥ (ℓ− p)r; and the second inequality
ollows from r2 − 3r + 1 < 0 for r ∈ [

1
2 , 1). This completes the

roof. ■

By Lemma 4, if p∗∗

i > 0 and p∗∗

j > 0, then we must have that
∗∗

i + p∗∗

j ≥
2
3 . Therefore, there are at most three active firms in

the optimum. Furthermore, when three firms remain active, we
must have that p∗∗

1 = p∗∗

2 = p∗∗

3 =
1
3 , which can easily be proved

o be suboptimal. Therefore, only the two strongest firms would
emain active in the optimum.

Next, we characterize the optimal equilibrium winning prob-
bilities p∗∗

≡ (p∗∗

1 , . . . , p
∗∗
n ). Because p∗∗

i = 0 for i ∈ {3, . . . , n},
e must have p∗∗

2 = 1−p∗∗

1 . Therefore, the sponsor’s optimization
roblem can be simplified as

min
1∈(0,1)

(p1)1−r

(1 − p1)r
+ χ

(1 − p1)1−r

(p1)r
,

where χ := (v1/v2)
r

≥ 1. The first-order condition with respect
to p1 yields

p1
1 − p1

− χ
1 − p1
p1

=
(χ − 1)(1 − r)

r
=: M,

rom which p∗∗

1 can be solved for as

∗∗

1 =

√
M2 + 4χ + M√

M2 + 4χ + M + 2
.

This completes the proof. ■
18
Proof of Corollary 3. It is straightforward to verify that α1 > α2
if and only if p∗∗

1 >
χ

χ+1 , which can be further simplified as

M > χ − 1 ⇔
(χ − 1)(1 − r)

r
> χ − 1 ⇔ r <

1
2
.

This completes the proof. ■

Proof of Theorem 3. Similar to Lemma 2, fixing the equilibrium
winning probabilities p ≡ (p1, . . . , pn), we can show that

xi = pi(1 − pi)vir,

nd

i(p) =

(
(pi)1−r[

(1 − pi) vi
]r
) 1

d
/ ∑

j∈N+(p)

( (
pj
)1−r[(

1 − pj
)
vj
]r
) 1

d

.

Carrying out the algebra, we can obtain that
n∑

i=1

αd
i · xri =

n∑
i=1

αd
i [pi(1 − pi)vir]r

=
r r[∑

j∈N+(p)

(
(pj)

1−r

[(1−pj)vj]r
) 1

d
]d ,∀ d, r ∈ (0, 1].

Fix r, d ∈ (0, 1], define g(·) as

g(p) :=

[
p1−r

(1 − p)r

] 1
d

.

When firms are identical (i.e., v1 = · · · = vn), the designer’s
optimization problem is equivalent to choosing p ≡ (p1, . . . , pn)
o minimize∑
∈N+(p)

g(pj),

ubject to constraints (5). To proceed, it is useful to prove several
ntermediate results.

emma 5. Fix r, d ∈ (0, 1]. The following statements hold:

i. If d+ r ≤ 1, then g(p) is strictly convex in p for all p ∈ [0, 1).
ii. If d + r > 1, then there exists a threshold p̃ ∈ (0, 1) such

that g(p) is strictly concave on [0, p̃] and is strictly convex on
[p̃, 1). Moreover, g ′′′(p) > 0 for all p ∈ (0, 1).

Proof. Carrying out the algebra, we can obtain that

g ′(p) =
g(p)
d

(
1 − r
p

+
r

1 − p

)
> 0,

and

g ′′(p) =
g(p)

d2(1 − p)2p2
S(p),

where S(p) is defined as

S(p) := (1− d− 2r)
[
(1 − 2r)p2 − 2(1 − r)p

]
+ (1− r)(1− d− r).

(14)

It is obvious that S(·) is quadratic in p for r ̸= 1/2 and is linear
in p for r = 1/2, and it can be verified that S(p) is monotone on
0, 1) for all r ∈ (0, 1]. Next, note that S(0) = (1 − r)(1 − d − r)
and S(1) = r(d + r) > 0. Therefore, if d + r ≤ 1, then S(p) > 0
for all p ∈ (0, 1). If d + r > 1, there exists p̃ ∈ (0, 1) such that
S(p) < 0 on (0, p̃) and S(p) > 0 on (p̃, 1).
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It remains to show that g ′′′(p) > 0 for all p ∈ (0, 1) when
+ r > 1. For r = 1, we have that

′′′(p) =
g(p)(d + 1)(2d + 1)

d3(1 − p)3
> 0,∀ p ∈ (0, 1).

For r ̸= 1, we have that

g ′′′(p) =
g(p)(1 − r)(d + 2r − 1)(2d + 2r − 1)

d3(1 − p)3p3  
>0

×

[
2r − 1
1 − r

p3 + 3p2 − 3
w

1 + w
p +

w
(
2w +

1−r
r

)
(1 + w)

(
2w +

1
r

)] ,
here w := (d + r − 1)/r ∈ (0, 1]. Note that

2r − 1
1 − r

p3 + 3p2 − 3
w

1 + w
p +

w
(
2w +

1−r
r

)
(1 + w)

(
2w +

1
r

)
p2(1 − p) +

r
1 − r

p3  
≥0

+2p2 − 3
w

1 + w
p +

w
(
2w +

1−r
r

)
(1 + w)

(
2w +

1
r

)  
≥

w
1+w

2w
2w+1

≥ 2p2 − 3
w

1 + w
p +

w

1 + w

2w
2w + 1

≥
w2(7 − 2w)

8(w + 1)2(2w + 1)
> 0.

Therefore, g ′′′(p) > 0 for all p ∈ (0, 1) and r ∈ (1 − d, 1]. This
oncludes the proof. ■

emma 6. Suppose that d + r > 1 and p ∈ (0, 1). Then g(p) ⋛

g(p/2) if and only if p ⋛ p⋆, where p⋆ := 2
(
1 −

1

2−2−
r+d−1

r

)
.

Moreover, p⋆/2 > p̃, where p̃ is defined in Lemma 5.

Proof. The first part of the lemma is trivial, and it remains to
prove the second part. Recall that we denote (r + d − 1)/r by w
in the proof of Lemma 5. It follows from Eq. (14) that

S
(
p⋆

2

)
=

−2
d+1
r +2(d + 1)r + 4

1
r r(d + r) + 4

d+r
r [(2r − 1)d + 1](

2
d
r +2

− 2
1
r

)2
=

4
1
r r(

2
d
r +2

− 2
1
r

)2 [rw + 1 + (3 − w)4w

−2(2 + rw − r)2w] .

efine T (r, w) := rw + 1 + (3 − w)4w − 2(2 + rw − r)2w . It
an be verified that ∂T /∂r > 0, and thus T (r, w) > T (0, w) =

+ (3−w)4w−2w+2 > 0, which in turn implies that S(p⋆/2) > 0
and g ′′(p⋆/2) > 0. Therefore, we must have that p⋆/2 > p̃. This
concludes the proof. ■

Lemma 7. Suppose that d+ r > 1 and 0 ≤ a ≤ b ≤ p̃, where p̃ is
defined in Lemma 5. Then g(a) + g(b) ≥ g(a + b).

Proof. Define ξ (p) as

ξ (p) := g(p) − g(p − p̃) − g(p̃), p ∈ [p̃, 2p̃].

Note that g(0) = 0 and thus ξ (p̃) = 0. By Lemma 6, ξ (2p̃) =

g(2p̃)−2g(p̃) < 0. Moreover, g ′′(p) is increasing in p by Lemma 5,
and thus ξ ′′(p) = g ′′(p) − g ′′(p − p̃) ≥ 0, which in turn implies
that ξ (p) is convex in p for all p ∈ [p̃, 2p̃]. Therefore, we have that

ξ (p) ≤ 0,∀ p ∈ [p̃, 2p̃]. (15)
19
We can now prove the lemma. If a+b ≤ p̃, then g(·) is concave
in p for p ∈ [a, b] by Lemma 5 and thus g(a) + g(b) ≥ g(a + b). If
a + b > p̃, then ξ (a + b) ≤ 0 by (15), which is equivalent to

g(a + b − p̃) + g(p̃) ≥ g(a + b).

Moreover, because g(·) is concave in p for p ∈ [0, p̃] by Lemma 5,
we have that

g(a) + g(b) ≥ g(a + b − p̃) + g(p̃).

Summing the above two inequalities, we immediately obtain that
g(a) + g(b) ≥ g(a + b). This concludes the proof. ■

Lemma 8. Suppose that d+ r > 1. Fixing a ∈ [0, p̃), there exists a
unique threshold p̂(a) that lies in (p̃, 1), such that

g(a) + g(p) ⋛ 2g
(
a + p
2

)
⇔ p ⋛ p̂(a).

Proof. Fix a ∈ [0, p̃). Let us define

λ(a, p) := g(a) + g(p) − 2g
(
a + p
2

)
, for p ∈ [0, 1).

We first prove existence. Recall that g(·) is strictly concave in p
or p ∈ [0, p̃]. Therefore, we have that

(a, p) = 2
[
g(a) + g(p)

2
− g

(
a + p
2

)]
< 0,∀ p ∈ [0, p̃].

Moreover, it is straightforward to verify that

lim
p↗1

λ(a, p) = ∞ > 0.

Therefore, there exists at least one solution to λ(a, p) = 0, and all
solutions must be strictly greater than p̃.

Next, we show that λ(a, p) = 0 has a unique solution. It
suffices to show that if λ(a, p̂) = 0 for some p̂, then we must
have ∂λ(a, p)/∂p|p=p̂> 0, which is equivalent to

g ′(p̂) > g ′

(
a + p̂
2

)
.

Suppose, to the contrary, that g ′(p̂) ≤ g ′
(
(a + p̂)/2

)
. Because g(·)

is convex in p for p ∈ [p̃, 1) by Lemma 5, we must have that
(a + p̂)/2 < p̃, which implies that g ′(·) first decreases and then
increases with p for p ∈

(
a+p̂
2 , p̂

)
. Therefore, we have that

g ′(p) < max
{
g ′(p̂), g ′

(
a + p̂
2

)}
= g ′

(
a + p̂
2

)
,

∀p ∈

(
a + p̂
2

, p̂
)
. (16)

Similarly, it follows from (a + p̂)/2 < p̃ and Lemma 5 that g(·) is
concave on

(
0, a+p̂

2

)
. Therefore, we have that

g ′(p) > g ′

(
a + p̂
2

)
,∀ p ∈

(
a,

a + p̂
2

)
. (17)

ext, by λ(a, p̂) = 0 and the Mean Value Theorem, there exists
z1, z2) ∈

(
a, a+p̂

2

)
×

(
a+p̂
2 , p̂

)
such that

g ′(z1) =

g
(

a+p̂
2

)
− g(a)

p̂−a
2

=

g(p̂) − g
(

a+p̂
2

)
p̂−a
2

= g ′(z2).

However, the above equality cannot hold because

g ′(z1) > g ′

(
a + p̂

)
> g ′(z2),
2
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here the first inequality follows from (17) and the second in-
quality follows from (16). A contradiction. This concludes the
roof. ■

emma 9. Suppose that d + r > 1. If there exists (a, b) ∈

(0, p̃) × (p̃, 1) such that g(a) + g(b) = 2g
( a+b

2

)
, then a + b ≤ p⋆,

where p⋆ is defined in Lemma 6.

Proof. Fixing a ∈ (0, p̃), it follows immediately from Lemma 8
that b = p̂(a). Define m(a) as

m(a) :=
a + p̂(a)

2
, for a ∈ [0, p̃).

t suffices to show that m(a) = [a + p̂(a)]/2 ≤ p⋆/2. Note that
ima↗p̃ p̂(a) = p̃; together with Lemma 6, we have that

lim
↗p̃

m(a) = p̃ <
p⋆

2
.

Suppose, to the contrary, that there exists some a′
∈ [0, p̃)

such that m(a′) > p⋆/2, then there must exist a′′
∈ (p′, p̃)

such that m(a′′) = p⋆/2. Denote p̂(a′′) by b′′. Then a′′
+ b′′ and

g(a′′) + g(b′′) = 2g
(

a′′
+b′′

2

)
by definition. To prove the lemma, it

suffices to show that there exists no a, b > 0, with a ̸= b, such
that a + b = p⋆ and g(a) + g(b) = 2g

( a+b
2

)
.

Define ζ (·) as

(a) := g(a) + g(p⋆ − a) − 2g
(
p⋆

2

)
, for

[
0,

p⋆

2

]
.

t remains to show that ζ (a) = 0 has no solution on
(
0, p⋆

2

)
.

ote that ζ (0) = 0 and ζ (p⋆/2) = 0. Moreover, ζ ′(0) = +∞ and
′ (p⋆/2) = 0. Next, we show that ζ ′(a) = 0 has a unique solution
n the interval

(
0, p⋆

2

)
, from which we can conclude that ζ (a)

ollows an inverted-U-shaped curve on
(
0, p⋆

2

)
and thus ζ (a) = 0

has no solution on
(
0, p⋆

2

)
.

Note that a solution to ζ ′(a) = 0 must exist from the Mean
Value Theorem and the fact that ζ (0) = ζ (p⋆/2). Moreover, it is
straightforward to verify that ζ ′(a) = 0 is equivalent to g ′(a) =

g ′(p⋆ − a). Therefore, it suffices to show that g ′(a) = g ′(p⋆ − a)
has a unique solution on

(
0, p⋆

2

)
. In what follows, we prove the

result for the case r ̸= 0.5. The analysis is similar for the case
r = 0.5, and is omitted for brevity.

Carrying out the algebra, g ′(a) = g ′(p⋆ − a) is equivalent to

τ (a) := log(c1 − a) − log(a + c1 − p⋆) + c2 log(p⋆ − a) − c2 log a
+ c3 log(a + 1 − p⋆) − c3 log(1 − a) = 0,

here c1 := −(1 − r)/(2r − 1) ∈ (−∞, 0] ∪ (1,∞), c2 :=

d + r − 1)/d ∈ (0, r], and c3 := (d + r)/d ≥ 1 + c2 > 0.
Taking the derivative of τ (·) with respect to a yields

′(a) =
c3(2 − p⋆)

(1 − a)(a + 1 − p⋆)
−

c2p⋆

a(p⋆ − a)
−

2c1 − p⋆

(c1 − a)(a + c1 − p⋆)
.

Notice that τ (0) = +∞, τ (p⋆/2) = 0, and τ ′(0) = −∞. It suffices
to show that there exists at most one solution to τ ′(a) = 0 on the
interval

(
0, p⋆

2

)
.

Simple algebra would verify that τ ′(a) = 0 is equivalent to

ϕ(θ ) := Aθ2 + Bθ + C = 0,

where θ := a(p⋆ − a) and A, B, and C are defined, respectively, as

A := 2c1 + p⋆(c2 + c3 − 1) − 2c3,

B := c2
[
c p⋆ + c (p⋆ − 2)

]
+ c

{
2 − p⋆

[
c p⋆ + c (p⋆ − 2) + 2

]}

1 2 3 1 2 3

20
− p⋆(1 − c2)(1 − p⋆),
C := c1(c1 − p⋆)c2(1 − p⋆)p⋆ > 0.

otice that ϕ(θ ) is a quadratic function with ϕ(0) > 0 and θ =

(p⋆−a) ≤ (p⋆)2/4 < 1
4 . Therefore, to prove the lemma, it suffices

to show that ϕ(1/4) < 0. Simple algebra would verify that

ϕ

(
1
4

)

=

⎡⎣ 4r2(p⋆ − 1) {[8(p⋆ − 1)p⋆ − 1] d + 4(7 − 5p⋆)p⋆ − 6}
−2r

[
8(3d − 4)(p⋆)3 + 4(19 − 13d)(p⋆)2 + (26d − 49)p⋆ + 3d + 5

]
+(d − 1)(5 − 4p⋆)2p⋆ + 16r3(p⋆ − 1)2(2p⋆ − 1)

⎤⎦
16d(1 − 2r)2

.

Define the numerator of the fraction on the right-hand side of
the above equation by J (d). Note that J (d) is linear in d, and thus
it suffices to show that J (0) < 0 and J (1) < 1. It can be verified
that

J (0) =
[
4r(2r − 3)(p⋆ − 1) + 4p⋆ − 5

]  
K(p⋆)

×
[
4(r − 1)(p⋆)2 + (5 − 6r)p⋆ + 2r

]  
L(r)

(18)

Note that K(p⋆) in (18) is linear in p⋆, and thus

K(p⋆) ≤ max {K(0),K(1)} = max {4(3 − 2r)r − 5,−1}
≤ max{−0.5,−1} < 0,

here the second inequality follows from (3 − 2r)r ≤ 9/8.
imilarly, L(r) in (18) is linear in r , which implies that

(r) > min {L(0),L(1)} = min
{
p⋆ + 4p⋆(1 − p⋆), 2 − p⋆

}
> 0.

herefore, J (0) = K(p⋆) × L(r) < 0, and it remains to show that
(1) < 0, which is equivalent to

(p⋆, r) := 2(1 − 2p⋆)(1 − p⋆)
[
−4(1 − p⋆)r2 + (7 − 6p⋆)r

]
+ p⋆

[
8(p⋆ − 3)p⋆ + 23

]
− 8 < 0.

ote that V(p⋆, r) is quadratic in r . It is straightforward to verify
hat for all 0 < p⋆ < 1, we have that

(p⋆, 0) = p⋆
[
8(p⋆ − 3)p⋆ + 23

]
− 8 < 0,

and

V(p⋆, 1) = p⋆ − 2 < 0.

If p⋆ ≥ 1/2, then V(p⋆, r) is convex in r . It follows immediately
that

V(p⋆, r) ≤ max
{
V(p⋆, 0),V(p⋆, 1)

}
< 0,∀ r ∈ (0, 1].

If p⋆ < 1/2, then V(p⋆, r) is concave in r and is maximized at
r = (7 − 6p⋆)/[8(1 − p⋆)] < 1, which implies that

V(p⋆, r) ≤ V
(
p⋆,

7 − 6p⋆

8(1 − p⋆)

)
=

1
8

{
2p⋆

[
−4(p⋆)2 + 6p⋆ + 1

]
−15

}
< 0,∀ 0 < p⋆ < 1.

Therefore, we have that J (1) < 1. This concludes the proof. ■

Now we can prove Theorem 3. Fix r, d ∈ (0, 1]. We first show
that all active firms must win with equal probability. It suffices
to prove that

g(a) + g(b)
2

≥ min
{
g
(
a + b
2

)
,
g(0) + g(a + b)

2

}
,

∀a, b ≥ 0, a + b < 1. (19)
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e consider the following two cases depending on d+ r relative
o one.

ase I: d + r ≤ 1. By Lemma 5, g(·) is convex. Therefore, we have
that
g(a) + g(b)

2
≥ g

(
a + b
2

)
≥ min

{
g
(
a + b
2

)
,

g(0) + g(a + b)
2

}
,∀a, b ≥ 0, a + b < 1.

ase II: d + r > 1. Suppose, to the contrary, that there exist
a0, b0), with b0 > a0 > 0 and a0 + b0 < 1, such that

g(a0) + g(b0)
2

< g
(
a0 + b0

2

)
, (20)

nd
g(a0) + g(b0)

2
<

g(0) + g(a0 + b0)
2

. (21)

irst, note that it cannot be the case that b0 > a0 ≥ p̃. Otherwise,
it follows from Lemma 5 that g(·) is strictly convex on [a0, b0],
nd thus
g(a0) + g(b0)

2
> g

(
a0 + b0

2

)
,

which contradicts (20). Next, note that it cannot be the case that
p̃ ≥ b0 > a0. Otherwise, it follows immediately from Lemma 7
and g(0) = 0 that
g(a0) + g(b0)

2
≥

g(a0 + b0)
2

=
g(0) + g(a0 + b0)

2
,

hich is a contradiction of (21). Therefore, we must have that
0 > p̃ > a0. Lemma 8, together with (20), implies that b0 <

p̂(a0). Next, define

δ(a, b) :=
g(0) + g(a + b)

2
−

g(a) + g(b)
2

,

for (a, b) ∈ [0, p̃] × [p̃, 1).

t follows immediately from (21) that δ(a0, b0) > 0. Moreover, we
have that
∂δ

∂b
=

g ′(a + b) − g ′(b)
2

> 0,

where the strict inequality follows from Lemma 5 and b0 > p̃.
Therefore, we have that δ(a0, p̂(a0)) > δ(a0, b0) > 0, which is
equivalent to

g(a0) + g(p̂(a0))
2

<
g(0) + g(a0 + p̂(a0))

2
=

g
(
a0 + p̂(a0)

)
2

. (22)

eanwhile, according to the definition of p̂(·) in Lemma 8, we can
btain that
g(a0) + g(p̂(a0))

2
= g

(
a0 + p̂(a0)

2

)
. (23)

The above equation, together with Lemma 9, implies instantly
that

a0 + p̂(a0) ≤ p⋆,

which in turn implies that

g
(
a0 + p̂(a0)

)
2

≤ g
(
a0 + p̂(a0)

2

)
, (24)

y Lemma 6. Combining (23) and (24), we can obtain that

g(a0) + g(p̂(a0))
2

= g
(
a0 + p̂(a0)

2

)
≥

g
(
a0 + p̂(a0)

)
2

, (25)

hich contradicts (22). Therefore, there exists no (a0, b0), with
21
b0 > a0 > 0 and a0 + b0 < 1, to satisfy (20) and (21)
simultaneously.

From the above analysis, we see that (19) holds for all (r, d) ∈

(0, 1] × (0, 1]. Therefore, all active firms must win with equal
probability, and it remains to pin down the number of active firms
in the optimal contest, which we denote by κ†. It is evident that
κ† solves the following optimization problem:

min
κ ′∈{2,...,n}

(
1
κ ′

) 1−d−r
d
/(

1 −
1
κ ′

) r
d

.

Simple algebra would verify that

κ†
= n, if d ∈ (0, 1 − r],

and

κ†
∈

{
min

{
n,
⌊
1 +

r
r + d − 1

⌋}
,

min
{
n,
⌊
2 +

r
r + d − 1

⌋}}
, if d ∈ (1 − r, 1].

his completes the proof. ■
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